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1 Introduction

The demand for parallel computing continues to rise as a lot of research areas in Biology,

Chemistry and Engineering depend on fine-grained simulations or the solution of large

systems of differential equations. The hardware available to perform such computations

is becoming faster and cheaper. However, increasing the clock frequency of processors is

limited by constraints such as power dissipation. So systems are not getting much faster

but more parallel since many years.

Many high performance computing (HPC) clusters available today consist of a very large

number of cores. These cores are relatively slow compared to modern desktop CPUs and

have low-latency access to a high-bandwidth interconnect [AAA+02, ABB+09]. Utilizing

the huge number of cores in message passing frameworks such as MPI [Hem94] has been

shown to be difficult when point to point messaging is used for communication. It obfus-

cates the communication pattern, complicates the design and implementation of parallel

programs and hinders performance in some cases [Gor04].

Therefore, to develop scalable scientific applications, collective communication should be

used instead. One of the merits of MPI is that it includes support for most of the collective

communication schemes used in practice. The optimization of MPI collectives is an active

research area since many years [AHA+05, TRG05].

Collectives in MPI-2 are blocking, which means communication can not be overlapped by

computation. This is expected to change in the future, as non-blocking implementations

of MPI collectives, such as LibNBC [HL06] have been shown to improve the performance

of scientific applications [HZ07, HGLR07].

Two main problems have been identified when using non-blocking MPI collectives. The

first problem is progression: When a non-blocking MPI collective is executed and its ex-

ecution is overlapped with computation there must be a way to ensure that the commu-

nication can progress. For user level MPI libraries this can be done in two ways: either

the computation has to be interleaved with calls to the MPI library such as MPI_Test(),

or the communication has to be performed in a separate thread. Both options have draw-

backs [HL08]: The optimal frequency for the polling with MPI_Test() is hard to determine

and depends on machine and network parameters such as interrupt and network latency.
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1 INTRODUCTION

Also it can be impossible to split the computation into smaller pieces to interleave it with

MPI_Test() calls, for example when the computation step is a call to an external library.

The progression problem could be solved completely by making the network interface

hardware or a part of the software network stack aware of the abstract communication

pattern that should be executed so that progression does not have to be ensured by the

application. ESPGOAL is implemented as a Linux kernel module, as such it can imple-

ment asynchronous progression without polling as it can receive interrupts from the Linux

kernel network stack whenever new data has arrived.

Another problem with MPI collectives is that the application can not define new collec-

tives dynamically. ESPGOAL solves this problem as it can execute arbitrary dependency

graphs.

The basic idea behind ESPGOAL is to express the role of each node in a collective com-

munication primitive, for example a barrier, as a dependency graph between non-blocking

send and receive operations and local transformations on data (similar to MPIs reduction

operations). Figure 1.1 gives an example for the data movement pattern in a scatter oper-

Figure 1.1: Data movements for a tree based scatter operation with five nodes

ation across five nodes which is implemented in a tree based manner. Data items in green

can be stored in the buffers that would be passed to the collective function by the applica-

tion, if we assume MPI semantics. Red data items have to be stored in a temporary buffer

until the collective operation is finished for the respective rank.

To carry out this communication pattern each rank has to perform a distinct set of commu-

nication tasks. If we assume each data item is a four bytes in size rank number ones tasks

can be expressed as

1. Receive 8 B from rank 0 into temp buffer at offset 0

2. Copy 4 B from temp buffer offset 0 into recv buffer offset 0

2



3. Send 4 B from temp buffer offset 4 to rank 2

Care must be taken to prevent the execution of tasks two and three before task number one

is finished. We can represent the task list as a dependency graph as shown in Figure 1.2.

The nodes in the dependency graph consist of primitive operations such as non-blocking

sends and receives as well as simple transformations on data in local buffers. An edge

u → v in the graph means that there is a dependency on v which is resolved after the task

represented by u is completed. An operation may only be started if it has no incoming

edges or if all operations on the tail of its incoming edges are already finished. At any

point in time, operations that do not have unmet dependencies should be able to progress

independently and in parallel. Therefore all send and recv operations are non blocking.

A non-blocking operation is considered to be finished after it can be guaranteed that all

buffers used by it can be overwritten by other operations.

recv 8B from rank 0 into tmp[0]

copy 4B from tmp[0] to recvbuff[0] send 4B from tmp[4]  to  rank 2

Figure 1.2: Local task graph for rank one (cf. Figure 1.1)

Dependency graphs as the one shown in Figure 1.2 will be compiled into a space effi-

cient binary object so that it can be copied into the kernel memory space with a single

copy_from_user() call. The application can instruct the ESPGOAL kernel module

to execute the dependency graph, once it is compiled to a binary object, called schedule

from now on. The idea to express collective communication tasks as dependency graphs

was published by Höfler et al. in [HSL09b].

To carry out the send and receive operations specified in the schedule, our kernel leverages

a modified version of the Ethernet Stream Protocol (ESP). The original version of ESP is

explained in detail in [HRM+06], later, flow control was added to ESP. The flow control

mechanism is documented in [Tre07]. ESP is a reliable, low overhead protocol for com-

munication over Ethernet. It was chosen to be the transport layer for this project because

we were not aware of a Ethernet communication protocol which offered a non-blocking

kernel API and one of the authors, already gained enough inside into ESP in prior projects

to be able to implement such an API on top of the existing ESP codebase.
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1 INTRODUCTION

1.1 Related Work

The ESP protocol used as a basis for this work is a low overhead protocol for generic

Ethernet clusters. As such it bears resemblance to a number of projects with a similar goal

like GAMMA [Cia03], EMP [SWP01] and Open-MX [Gog08].

EMP and GAMMA modify the firmware of network adapters or rely on device specific

hardware features to, for example, query the NIC in polling mode rather then waiting for

an interrupt on packet arrival to reduce the point to point latency or to be able to perform

zero-copy communication over generic Ethernet hardware. As such these projects are very

different from ESP which does not depend on specific low level NIC features. However,

the results obtained by the respective research groups are remarkable, GAMMA claims

to achieve an end to end latency of about half of what we measured with ESP on our

testbed.

Open-MX is a low overhead Ethernet protocol implementation which is API compatible

to Myrinet MX [Geo04]. Contrary to EMP and GAMMA, Open-MX is not depending on

low-level hardware features. It tries to achieve good performance by avoiding memory

copies where possible. Incoming data is written directly to application buffers in most

cases. For this to work the application buffers have to be pinned, i.e. the operating system

is not allowed to swap the memory pages associated with these buffers. When the NIC

receives new data an event is generated by the receive hook associated with the ethertype

used for Open-MX packets. This event is put in a queue which resides in a pinned memory

region shared between the Open-MX kernel module and its userspace library. Open-MX

requires the application to call into its userspace library often enough so that this queue

does not overflow. As such it is impossible to directly use the Open-MX module to im-

plement a GOAL scheduler as a kernel module, as Open-MX does not define a kernel API

which offers similar features as the userspace library. However, as Open-MX shows much

better performance in latency benchmarks than ESP it could be a possible work item for

the future to derive such an API from the existing Open-MX protocol and replace the ESP

transport layer.

The only userspace implementation of non-blocking collectives known to the authors,

LibNBC [HLR07,HL06], naturally can not offer true asynchronous progress, as it can not

rely on network interrupts for progress, so progress has to be ensured by frequent polling

by the application or by having a separate progression thread. Both approaches increase

the host overhead. The collective functions offered by LibNBC have the same syntax and

semantics (where applicable) as the collectives defined by MPI [Hem94]. The way to ex-

press collective operations in LibNBC is equivalent to that of GOAL in its expressiveness,

however, in LibNBC dependencies can only be defined between “rounds” instead of single

operations but since there are no restriction on how many operation a round has to con-
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tain it is essentially the same. Schedules in LibNBC are also compiled into cache-friendly

binary objects prior to execution.

While this work was in progress, another research group published a paper [NI10] which

describes a kernel module which also enables userspace applications to define collective

communication schedules which are then progressed in kernel context. Unfortunately their

implementation, named KACC, is not publicly available as of now. The userspace API is

semantically similar to the one offered by GOAL. The main difference between ESPGOAL

and KACC is that KACC executes the Progress Engine (PE) in the SoftIRQ context in-

side of a Linux kernel Tasklet, where ESPGOAL uses a Workqueue to implement the same

functionality. While the use of Tasklets might lead to a lower scheduling latency (the

difference estimated by some microbenchmarks later in this work could be up to 1µs),

executing the progress engine, or scheduler in ESPGOAL terms, also has certain disad-

vantages. For example it is impossible to use Linux kernel sockets as the transport layer in

a Tasklet based implementation, as certain operations on sockets can sleep and it is illegal

to call such functions in a Tasklet. That means the underlying communication layer has

to be implemented directly on top of the device driver. This does not make the imple-

mentation unportable, as this part of the networking API is already device independent in

Linux, however, as this layer offers none of the abstractions known from socket program-

ming to the developer, implementing a communication layer on top of it is cumbersome.

The authors claim to use TCP as their transport layer, however, for the reasons explained

above, we can only speculate that they reimplemented at least parts of the TCP networking

stack already in the Linux kernel. Another implication of the usage of Tasklets instead of

Workqueues is that all memory that is accessed from inside the Tasklet has to be kernel

memory or pinned memory.
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2 The GOAL API

2.1 API Conventions

All GOAL API functions and datatypes visible to the user should have the Prefix

“GOAL_”. Those not visible to the user should have the prefix “_GOAL_”.

2.2 Basic GOAL Functionality

2.2.1 Initialization

Before any other GOAL operation is called the user has to initialize the GOAL communi-

cation subsystem by calling

1 i n t GOAL_Init ( )

This function may only be called once by every process. To check if it was already called

before the user can call the function

1 i n t G O A L _ I s I n i t i a l i z e d ( )

which will return 1 if GOAL was already initialized for the calling process, 0 otherwise.

Note that this variant of the GOAL API is not thread-safe, as we do not pass any state

information to GOAL. For the thread-safe API see its separate documentation.

After GOAL is initialized we can find out how many endpoints are participating in our

communication group with the function

1 i n t GOAL_GroupSize ( )

6



2.2 BASIC GOAL FUNCTIONALITY

it will return the number of endpoints in our communication group. Note that GOAL does

not have communicator support as known from MPI — a communication group can only

be defined at the start of a GOAL application.

GOAL will enumerate all endpoints with numbers from 0 to GOAL_GroupSize()-1. To

find out the number of our endpoint we can call

1 i n t GOAL_MyRank ( )

Note that neither the group size nor the local rank can change during a GOAL applications

life cycle, so it is unnecessary to call these functions more than once.

To free all resources allocated by GOAL_Init() an application has to call the function

1 i n t GOAL_Finalize ( )

After that no other GOAL functions can be called, except GOAL_IsFinalized(). Similar to

GOAL_IsInitialized() that function can be used to check if GOAL was already finalized.

1 i n t GOAL_IsFinal ized ( )

which will return 1 if GOAL is already finalized or not initialized yet, 0 otherwise.

2.2.2 Graph Creation

The basic idea behind GOAL is to describe the dependencies among a series of communi-

cation and computation operations, so that the GOAL interpreter can execute these in any

order which satisfies those dependencies. Dependencies can be described with directed

acyclic graphs (DAGs). Such DAGs are the basic building blocks for GOAL.

So the first function which must be called to use GOAL creates a new GOAL_Graph

object:

1 GOAL_Graph GOAL_CreateGraph ( )

Once we are finished with a GOAL_Graph (i.e. after it has been successfully compiled to

a binary schedule) we can free all resources used by that graph with the function

1 i n t GOAL_FreeGraph (GOAL_Graph g )

7



2 THE GOAL API

2.2.3 Adding Operations

Now we can add operations (send, receive and computations). Those will be represented as

vertices in the graph, so all vertex-adding functions return an GOAL_Vertex object, which

is a handle to the newly added vertex. Of course each operation needs some parameters

to specify its task. All calls to vertex-creating functions have the same first parameter, the

GOAL_Graph Object which they should be added to.

In case of the send operation the user needs to specify the sendbuffer, the number of bytes

to be sent and the destination rank.

1 GOAL_Vertex GOAL_Send (GOAL_Graph graph , void * buf , i n t count , i n t

d e s t , i n t t a g =0 , GOAL_MemType mem=GOAL_USERSPACE)

The last parameter of this function is common for all buffers in ESPGOAL: Buffers can

be pointers to memory allocated by the program or byte offsets in the scratchpad memory

region of that schedule. The buffer argument will be interpreted as a normal pointer if the

“mem” argument is set to GOAL_USERSPACE (the default). We will explain the creation

and usage of scratchpad memory in detail in Section 2.2.5.

To receive data GOAL provides a receive operation, which can be added to the graph

with the GOAL_Recv() function. The meaning of its parameters is analogue to

GOAL_Send().

1 GOAL_Vertex GOAL_Recv(GOAL_Graph graph , void * buf , i n t count , i n t

source , i n t t a g =0 , GOAL_MemType mem=GOAL_USERSPACE)

GOAL also supports sending and receiving multiple pieces of (possibly discontinuous)

data in a single operation. This is done by giving a list of pointers to the beginning of

the individual pieces of data as well as a list of lengths that describes how many bytes

should be copied from each specified location to the GOAL_SendVec() function. These

parameters are given to GOAL by-reference, however, the contents of these lists are imme-

diately copied into the GOAL graph by the GOAL_SendVec() function, they can be freed

or overwritten after that function returned. The actual data is of course (as in the case of

GOAL_Send()) red during the schedule execution. The interface of the GOAL_SendVec()

function is:

1 GOAL_Vertex GOAL_SendVec (GOAL_Graph graph , void ** o f f s e t s , i n t *
l e n g t h s , i n t num_elements , i n t d e s t , i n t t a g =0 , GOAL_MemType

mem=GOAL_USERSPACE)

8



2.2 BASIC GOAL FUNCTIONALITY

The first parameter graph specifies to which GOAL_Graph object the newly created oper-

ation will be added to. The offsets parameter is (in the default case, see below) an array

of void pointers, this array has to be at least of size num_elements and it contains the start

addresses of the data blocks that have to be sent. The lengths parameter is an array of inte-

gers that specify how many bytes each data block consists of. This array has to contain at

least num_elements entries. Suppose offsets[i] has the value of 0x82234242 and lengths[i]

is 32. That means that the i-th data block starts at address 0x82234242 and consists of 32

bytes. Note that GOAL will send all blocks as a contiguous piece of data without padding,

starting with block 0 to block num_elements-1. The rank who will receive that data is

given in the parameter dest.

To receive data and store it in a non-contiguous manner the function GOAL_RecvVec()

has to be used. Its prototype is analogue to GOAL_SendVec():

1 GOAL_Vertex GOAL_RecvVec (GOAL_Graph graph , void ** o f f s e t s , i n t *
l e n g t h s , i n t num_elements , i n t s r c , i n t t a g =0 , GOAL_MemType

mem=GOAL_USERSPACE)

Of course it does not have a destination parameter but a src parameter in its place to specify

from which rank we want to receive from. Note that the contents of the arrays offsets and

lengths do not have to be the same for a vector-send and the corresponding receive to

match. Messages are matched only on the overall size of the of the data. This makes it

possible, for example, to send an array stored in row-major order and store it in column-

major order on the receiving rank.

The vector-send and the vector-receive function have a common parameter mem. This pa-

rameter specifies if the contents of the offsets parameter will be interpreted as void pointers

to location in userspace memory (which is the case when mem=GOAL_USERSPACE,

the default) or as byte offsets in the scratchpad memory space (the allocation

and usage of scratchpad space is described below). In the scratchpad-case, when

mem=GOAL_SCRATCHPAD the void pointers in offsets will be casted to ints.

The third type of operations that can be used in GOAL (besides sending and receiving of

data) are so called local operations. A local operation does not involve any communica-

tion, it is executed on the local rank (the one executing the corresponding schedule) only.

The purpose of local operations (also called localops) is to enable the dependency based

execution of simple arithmetic operations inside of GOAL. For example when implement-

ing a collective with similar semantics as MPI_Reduce() the user might want to define a

dependency graph similar to this one:

9
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recv d1[] from 2

d_max[i] = max(d1[i], d2[i], d3[i])

send d_max[]  to  0

recv d2[] from 3 recv d3[] from 4

That can be accomplished in GOAL by implementing the mathematical operation d[i] =
max(...) as a local operation. Doing so gives the GOAL interpreter the freedom of execut-

ing the local operation as soon as all the data dependencies are fulfilled and wherever it is

appropriate, for example directly on the NIC if it the GOAL interpreter has the capability

to do so. However, to achieve this kind of freedom it must be ensured that local operations

are “simple enough” to be executed by the GOAL interpreter. Therefore only predefined

local operations are possible in the Basic GOAL API. The predefined operations available

in GOAL are:

Datatype GOAL_SINT GOAL_UINT GOAL_FLOAT

Width 1 8 16 32 64 1 8 16 32 64 1 8 16 32 64

GOAL_MAX

GOAL_MIN

GOAL_ADD

GOAL_SUB

GOAL_DIV

GOAL_MUL

GOAL_COPY

GOAL_AND

GOAL_OR

GOAL_XOR

GOAL_WTIME no type checking/conversion, puts timestamp [in s] in buf3 as 64bit float

Local operations can be added to a GOAL graph with the function:

1 i n t GOAL_LocalOp (GOAL_Graph graph , void *b1 , void *b2 , void * bres

, GOAL_Op op , GOAL_DataType dt , i n t e lement_wid th , i n t

num_elements , GOAL_MemType b1_mem=GOAL_USERSPACE, GOAL_MemType

b2_mem=GOAL_USERSPACE, GOAL_MemType b3_mem=GOAL_USERSPACE)

10



2.2 BASIC GOAL FUNCTIONALITY

Upon execution the buffers b1, b2 and bres will be interpreted as arrays of the type given

in the dt parameter, with each element consisting of element_width bytes. For example

a type parameter with a value GOAL_UINT and an element width of 16 means that the

buffers will be interpreted as arrays of type uint16_t containing num_elements entries. The

operation that will be carried out is specified by the op parameter. All valid values for

the parameters dt, element_width and num_elements are given in the above table. A green

rectangle means this combination of parameters is allowed, a red one means this combi-

nation is illegal. Operations that take two parameters (all, except GOAL_COPY) have the

following semantics: ∀i : b3[i] = b1[i]⊗b2[i] where ⊗ is the infix operator for the specified

operation, for example “−” in the case of GOAL_SUB. When the memtype arguments are

GOAL_USERSPACE the buffers will be assumed to be normal pointers in userspace, if

the memtype parameters have the value GOAL_SCRATCHPAD the corresponding buffer

arguments will be casted to ints and interpreted as offsets in the scratchpad buffer.

There is also a vector variant of GOAL_LocalOp with similar semantics which has the

following interface:

1 GOAL_Vertex GOAL_LocalOpVec (GOAL_Graph graph , void ** buf1 , i n t *
l e n g t h s 1 , i n t num_elements1 , void ** buf2 , i n t * l e n g t h s 2 , i n t

num_elements2 , void ** buf3 , i n t * l e n g t h s 3 , i n t num_elements3 ,

char d a t a t y p e , char d a t a t y p e _ w i d t h , char op , GOAL_MemType

b1_temp=GOAL_USERSPACE, GOAL_MemType b2_temp=GOAL_USERSPACE,

GOAL_MemType b3_temp=GOAL_USERSPACE)

2.2.4 Adding Dependencies

As we mentioned earlier the execution of the specified operations will be dependency-

driven. To add dependencies between operations the GOAL_Requires() function must

be used. Each of the functions that will add an operation to the graph will return a

GOAL_Vertex object which identifies that operation in the graph. These identifiers can

be passed to GOAL_Requires() to link them together: Suppose we want to receive some

data from rank 0 and upon reception we want to send this data to rank 2 and 3. The

dependency graph for this case would look like this:

recv from 0

send  to  1 send  to  2

11



2 THE GOAL API

Using the GOAL_Requires() function

1 GOAL_Requires (GOAL_Graph g , GOAL_Vertex p r e r e q , GOAL_Vertex

t a r g e t )

this can be expressed with the following piece of code:

1 GOAL_Vertex recv , send1 , send2 ;

r e c v = GOAL_Recv( g , &buf , 2 , 0 , GOAL_USERSPACE) ;

3 send1 = GOAL_Send ( g , &buf , 2 , 1 , GOAL_USERSPACE) ;

send2 = GOAL_Send ( g , &buf , 2 , 2 , GOAL_USERSPACE) ;

5 GOAL_Requires ( g , recv , send1 ) ;

GOAL_Requires ( g , recv , send2 ) ;

2.2.5 Scratchpad Buffer

Since the operations in a GOAL graph can be executed at any time after its definition by

the user, possibly also multiple times, allocating and freeing temporary buffers is difficult

for the user. One might be inclined to do something like this to implement a tree based

scatter:

buf = mal loc ( 6 4 ) ;

2 r e c v = GOAL_Recv( g , buf , 64 , 1 , GOAL_USERSPACE) ;

send1 = GOAL_Send ( g , buf , 32 , 2 , GOAL_USERSPACE) ;

4 send2 = GOAL_Send ( g , buf +32 , 32 , 3 , GOAL_USERSPACE) ;

GOAL_Requires ( g , recv , send1 ) ;

6 GOAL_Requires ( g , recv , send2 ) ;

f r e e ( buf ) ;

However, the problem with this approach is that the buffer is freed in line 7 before the

schedules execution is finished (in this example we did not even compile or start the sched-

ule execution).

If we omitted free() in the last line this example would work fine, however we would have

produced a memory leak as we never free buf now. One way around this would be to

manually track the life cycle of the schedule resulting from the Graph g and free buf when

the schedule is finished and will not be executed again. This is inconvenient and error-

prone, especially in scenarios where we want to hide the actual collectives (i.e. scatter)

implementation in a function call.
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Therefore GOAL supports a very minimal memory management subsystem, the scratchpad

buffer. We can inform GOAL that to execute the operations defined in “graph” we need at

most “bytes” bytes of temporary buffer space with the function

1 i n t GOAL_AllocateScra tchpad (GOAL_Graph graph , s i z e _ t b y t e s )

If we do that the GOAL interpreter will allocate a buffer of this size immediately

after the schedule corresponding to “graph” is executed and that buffer will be de-

stroyed as soon as the schedules execution is finished. To use that buffer we have

to supply offsets instead of pointers to any function that takes an argument of type

GOAL_MemType. For the memtype argument we have to supply GOAL_SCRATCHPAD

instead of GOAL_USERSPACE, which has to be used for standard memory accesses. The

supplied offsets are relative to the start of the scratchpad buffer. Note that it is not possi-

ble to have more than one scratchpad buffer. If several buffers are needed the user has to

allocate a single buffer large enough and perform the memory management himself.

The correct version of the example given above would look like:

1 GOAL_AllocateScra tchpad ( g , 64) ;

r e c v = GOAL_Recv( g , 0 , 64 , 1 , GOAL_SCRATCHPAD) ;

3 send1 = GOAL_Send ( g , 0 , 32 , 2 , GOAL_SCRATCHPAD) ;

send2 = GOAL_Send ( g , 32 , 32 , 3 , GOAL_SCRATCHPAD) ;

5 GOAL_Requires ( g , recv , send1 ) ;

GOAL_Requires ( g , recv , send2 ) ;

To copy data to/from the scratchpad memory we can use a local operation of the type

GOAL_COPY. See the documentation on local operations for more information.

2.2.6 Schedule Compilation

After we added all operations and dependencies to a GOAL_Graph we can transform it

into a GOAL_Schedule. Such a schedule is a compact binary representation of the corre-

sponding GOAL_Graph, optimized for the processing by a GOAL interpreter. A schedule

can not be changed any more by the user. To compile a GOAL_Graph the function

GOAL_Schedule GOAL_Compile (GOAL_Graph graph )

has to be used. Note that after a successful compilation the GOAL_Graph is no longer

needed unless we want to generate another schedule with more operations or dependencies.
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A GOAL interpreter can invalidate a GOAL schedule during execution. To find out if a

GOAL_Schedule is valid the function

1 i n t GOAL_IsScheduleValid (GOAL_Schedule sched )

can be used. It will return 1 if a schedule is valid (i.e., it can be executed by GOAL_Run)

and 0 otherwise. Schedule invalidation happens if the GOAL interpreter directly operates

on the schedule in userspace. During execution the dependency counters will be decre-

mented. After execution such a schedule would contain the same operations as before but

no dependencies between them.

If we want to reuse (i.e., execute it multiple times) a schedule and we are dealing with

a schedule-invalidating GOAL implementation, we can tell GOAL not to invalidate that

particular schedule (i.e. by copying it internally if necessary). For this purpose use the

function

1 void GOAL_MakeScheduleReusable (GOAL_Schedule sched )

that should always be used were applicable to write portable GOAL programs.

Once we are done with a schedule (i.e. its execution is finished and we do not want to

execute it again) we can free all resources used by it using

1 i n t GOAL_FreeSchedule (GOAL_Schedule sched )

to find out if a schedule is finished the user has to keep track of all the GOAL_Handles

associated with that schedule.

2.2.7 Schedule Execution

To start the execution of a compiled schedule the user has to call

1 GOAL_Handle GOAL_Run(GOAL_Schedule sched )

be aware that a schedule can be invalidated by the interpreter, depending

on its implementation, during execution. To prevent that one can use the

GOAL_MakeScheduleReuseable() function, as explained before.

To check if a schedules execution is finished, GOAL provides two different functions:
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1 i n t GOAL_Test (GOAL_Handle h a n d l e )

will return 1 if the corresponding schedule (the one for which handle was returned when it

was started with GOAL_Run) is finished executing, otherwise 0. It will not block

1 GOAL_Wait (GOAL_Handle h a n d l e )

on the other hand will block until the corresponding schedule is finished. A schedule can

be freed with GOAL_FreeSchedule() when all its copies are finished. If a schedule is freed

while it is still in execution the results are undefined.

2.3 GOAL-Extensions

Beyond the basic functionality described above several extensions could be useful. For

example it would be desirable to support user defined local operations. With user defined

local operations it would be possible to implement something semantically similar to the

active messages paradigm [PSZ92] without actually sending around function pointers like

originally suggested. However implementing support for user defined local operations in

a GOAL interpreter can be hard. Imagine a GOAL interpreter that runs on the NIC itself.

The code the actual operation consists of must be compiled for the processor architecture

used by the NIC instead of the hosts architecture, for which the rest of the application was

compiled for. Memory accesses must be trapped and deferred to the same address space

the main application is running in.

A possible option would be to use runtime-loadable objects produced with a separate tool

chain (cf. Cell BE). Here the user must have full knowledge of the target architecture and

the target environment. Another option could be to specify a simple language which can

be interpreted at runtime by an extended GOAL interpreter. However we did not consider

such extensions in this work.

A possible way to provide different extensions in different GOAL interpreters would be to

have a function

1 i n t GOAL _IsE xtens ionAva i l ab le (GOAL_ExtensionId e x t )

which returns 1 if the specified extension is provided by the currently used GOAL inter-

preter. Each extension can add a set of functions of the type GOAL_* but may not alter

the semantics of the functions described above.
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3 ESP Transport Layer

Usually systems using IEEE 802.3 Ethernet as data link layer use TCP/IP as their network

and transport layer. These protocols are designed for robustness in wide area network

environments and add an additional overhead during a transfer. This additional processing

is needed to handle routing, fragmentation and reordering. But it was shown that switched

clusters can benefit from a simplified protocol for both connectionless and connection-

oriented communication [HRM+06].

ESP/EDP, which was developed at TU Chemnitz [Tre07], was chosen to integrate a GOAL

interpreter. It provides a general solution for switched Ethernet networks based on Linux

without the dependency on special hardware or driver like U-Net, VIA, EMP or Gamma.

It can be used through sockets like UDP/IP or TCP/IP, but works with a slightly different

address format and a new protocol family PF_ENET. Transfers/connections are identified

using Ethernet MAC addresses for communication partners and 16 bit ports.

1 i n t fd ;

s t r u c t s o c k a d d r _ e n my_addr ;

3

i f ( ( fd = s o c k e t (AF_ENET, SOCK_STREAM, 0) ) == −1) {

5 p e r r o r ( " s o c k e t " ) ; e x i t ( 1 ) ;

}

7

memset (&my_addr , 0 , s i z e o f ( my_addr ) ) ;

9 my_addr . s e n _ f a m i l y = AF_ENET ;

my_addr . s e n _ a d d r l e n = ETH_ALEN;

11 my_addr . s e n _ p o r t = h t o n s (PORT) ;

13 i f ( b ind ( fd , ( s t r u c t s o c k a d d r *)&my_addr , s i z e o f my_addr ) == −1) {

p e r r o r ( " b ind " ) ; e x i t ( 1 ) ;

15 }

i f ( l i s t e n ( fd , 0 ) == −1) {

17 p e r r o r ( " l i s t e n " ) ; e x i t ( 1 ) ;

}

19

c l o s e ( fd ) ;
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The Ethernet Datagram Protocol (EDP) provides a solution for connectionless commu-

nication based on top of raw Ethernet messages. It can only multiplex transfers using

ports and can handle different control messages to get ICMP-like communication between

nodes. It cannot provide any sort of reliable communication or congestion control which

makes it inappropriate to exchange large amount of data. In its current form only the ICMP

like functionality is used by the MPI Ethernet BTL to detect which network interface card

provides a link-local connection to another host.

Figure 3.1: Standard integration of ESP in MPI — tasks in red are carried out by the kernel

module, green ones are performed in userspace.

ESP was implemented in the PF_ENET protocol family as extension for this unreliable,

connectionless protocol. It is a connection-oriented, port multiplexed and reliable protocol

on top of Ethernet and supports hand optimized congestion control for static, switched

networks. It can be used through standard sockets and is implemented in a single Linux

kernel module. This makes it possible to add own functionality and to integrate it in a

kernel based version of the GOAL interpreter with nearly no adjustments to the transport

protocol application programming interface.

Figure 3.1 shows that the current integration in a message passing library is done similar

to TCP. Sockets provided by the Linux kernel are used together with the new protocol

family. Unlike OpenMX, no special userspace library is needed to communicate with the

transport layer. This makes it easier to implement a communication management layer

inside kernelland since the kernel itself manages all socket operations and provides an

abstract in-kernel sockets API with the release of Linux v2.6.19.
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3.1 Receive Handling

When a packet gets received by a network interface card, an interrupt is generated to inform

the kernel about the new data it can now process. The kernel normally tries to stop the

interrupts for that card, gets all needed data, reactivates interrupts and then tries to process

as much data as possible in a SoftIRQ context. Processing means that the data is prepared

for the next layer inside the network stack. It depends on the actual card what this could

mean.

A card could for example send all its data using DMA to a socket buffer created earlier1 and

the processing routing has now to dequeue that buffer from a data structures which holds

all buffers the NIC is allowed to use2. Not all NICs are able to that. A different way to

handle the receiving interrupt for a driver is to create a socket buffer and fetch the data from

dedicated memory3. The socket buffer will be send to the next layer for processing using

specialised receiving functions like netif_rx()4 or netif_receive_skb()5.

In each layer the socket buffer gets now prepared for the next higher layer and protocol

dependent information is stored in a private data region of the socket buffer, so it can be

used without the information were it came from. For example the Ethernet frame contains

a field for the EtherType in the MAC header. The PF_ENET protocol family registered

its subprotocols using a constant integer equal to the EtherType in the MAC header and a

receiving hook which gets called by the underlying layer.

After ESP was notified about the reception of an Ethernet frame it has to process the data

further to ensure that enough data is available for at least its header. If the received frame is

not too small then the receiving socket can be determined from it by using the MAC header

(source and destination MAC address) and information from the ESP header (source and

destination port) as seen in Figure 3.2. This is enough information to decide if we have

a valid connection established and the data can be processed further when the user is not

currently accessing the socket. Otherwise a private per socket queue is used to create a

backlog that is processed after the user is not holding the socket anymore.

In case there is no socket available were we can add a backlog then there is either no

user available which can hold the socket or the received packet can be identified as invalid

transfer and must be dropped.

1drivers/net/r8169.c line 487 in Linux v2.6.36
2drivers/net/r8169.c line 4591 in Linux v2.6.36
3drivers/net/xilinx_emaclite.c line 606 in Linux v2.6.36
4net/core/dev.c line 2489 in Linux v2.6.36
5net/core/dev.c line 2945 in Linux v2.6.36
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ESP has to ensure that all packets it received are in correct order and no data was lost

during the transfer. Afterwards it has to finish the bookkeeping and maybe acknowledge

some messages.

In this situation, a userspace application could start to read new data from the socket buffer

into its data buffer and may finish a message. The application has to call either a blocking

receive function for the data or periodically a non-blocking test function. Otherwise it

would never know that the transfer has finished.

This means for non-blocking collectives that the application has to call a test operation

provided by the implementation of the non-blocking collective until the complete data

which belongs to it is processed. A different approach is to use dedicated threads which

have to handle the progression of the collective [HL08].

An alternative way of progression handling for non-blocking transfers will be introduced

later in form of the ESPGOAL communication management layer.

3.2 Transfer Management

It can happen that packets were dropped during the transfer. The cause could be errors

during the transmission or congestion at the receiving end or during the transmission, for

example in a switch. In case of congestion, it is most of the time not the right decision to

send even more data in form of retransmissions.

In ESP two classes of packets are defined to help to avoid congestions: One class are pack-

ets which are used to transfer data and the other class are packets used to signal changes in

the state of a socket. The latter one must always be transferred to keep the state of a socket

in sync, but the first class can be paused to avoid further congestion.

Figure 3.2 shows that, next to the flags SYN, ACK, FIN and RST, we also have RRQ,

TXS, TXF and TXR which are new compared to flags available in TCP. These are needed

to implement the new congestion aware retransmission scheme. TXR is actually an unused

flag in the ESP implementation, but can be used later in ESPGOAL.

A single transfer consists of two separated stages. In the initial stage only the sender has

to retransmit packets until it can be sure that the receiver is also aware that a transmission

started. The second stage starts when the receiver acknowledges the packet which was

marked using the TXS flag. After that only the receiver has a timeout running which

forces a re-request of a specific amount of packets which has not reached him. This makes
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it easier for the receiver to decide if it can or cannot handle more data right now or if the

sender should stop the transmission until the data in the socket buffers was processed.

A transmission is automatically stopped when the receiver gets a packet marked as “trans-

mission finished” with the TXF flag. This flag does not mean that a single write to the

socket was finished, but that the sender did not know about more data it should send at the

point when it did send the packet the first time.

This means that multiple writes to a socket can be coalesced into a single transfer by

removing the TXF flag of the last transmission and the TXS flag of the new transmission

if they are still in the write queue and therefore not send yet.

As special behavior added in the development of ESPGOAL, the TXF flag always adds the

TXR flag, but during a merge of two transfers the TXR will not be removed.

Figure 3.2: ESP packet header with added TXR flag

The merging reduces the amount of time the sender is in the initial stage where he has to

actively send data to the receving host and thus has a higher probability to create congestion

during that stage. [Tre07]

3.2.1 Known Problems

During the development of ESPGOAL different implementation details had to be corrected

to prevent various hangs and race conditions during transfers. All those changes were send

to the ESP repository6 and are not differences between ESP and ESPGOAL.

6http://www.unixer.de/research/commopt/
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CLOSED

PRE_SYN_SENT

connect() call

SYN_SENT

send SYN t imeou t

PRE_ESTABLISHED

recv SYN_ACK

ESTABLISHED

send ACK recv SYN_ACK

LISTEN

SYN_RECVD_0

recv SYN

SYN_RECVD_1

send SYN_ACK t imeou t

ESTABLISHED

recv ACK

Figure 3.3: New ESP connection setup state machine for connect() (left) and bind() (right)

21



3 ESP TRANSPORT LAYER

One of the most important change is the redesign of the connection setup. The original

design was made for systems were we can be sure that no packets will be dropped during

the handshake and no packets will be repeated. This assumption is not true in many situa-

tions. We could for example create a situation were either the connecting or the listening

host receives a lot of packets and either a switch or the receiving network card has to drop

the data. Each type of packet (SYN, SYN+ACK, ACK) can now be dropped and one host

may be in a different state compared to the connection partner. In many situations, this will

result in a hang due to the fact that not both partners have the state ESTABLISHED and

thus will drop packets which announce new transfers. There is also the situation that the

caller of connect is in the state SYN_SENT and receives a SYN+ACK packet. That im-

plied that it knows that his connection is established and his connection partner only waits

for an ACK packet. If that ACK packet is dropped then only one side knows about the

finished connection handshake and even a hypothetical resend of the SYN+ACK packet

would have caused a connection reset.

A new connection handshake similar to TCP was implemented as shown in Figure 3.3.

Now all states will be able to accept packets with SYN flag set and will try to retransmit

their handshake packet in case either their own packet or the ACK packet was dropped or

delayed.

A similar problem exists with the acknowledgment of TXF flagged packets. Usually the

receiver is forced to send an ACK to allow the sender to start a new transmission. The

sender is only transferring initial_burst_length packets before it hands over the

complete control over the transmission handling to the receiver, but the receiver only sends

RRQ in case it wants more packets. The receiving node stops to ask for more packets when

a TXF flagged packet was received and no new TXS packet was detected. It is possible that

an ACK packet for a TXF packet is dropped. In that situation the sender does not know that

all packets including the TXF flagged packet are acked and the receiver assumes that it is

no longer in control over the transmission. The only reason that this transmission does not

stop is that initial_burst_length in many situations is larger than the difference

of the sequence numbers between the last acked packet and the new TXS flagged packet.

The next TXS packet can be send as part of the initial_burst_length window of

sequence numbers and the sender ensures through retransmissions of this packet that the

receiver is aware of his role as controller of the transmission.

The ESP protocol currently does not assure that the amount of packets it can send after

the last acked packet is smaller than initial_burst_length. This may lead to the

situation that the difference between the sequence number of the last known acked packet

and the next TXS packet on the sender side is larger than initial_burst_length.

The next TXS packet will not be send because the sender still waits for the ACK of the last

TXF packet.
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There are different ideas on how to work around such a situation. TXS flagged packets

could be added to the filter ESP_CONNECTION_FLAGS, excluding special flags from

being stopped by the congestion control. This can lead to a problem when many small

transfers will be send and the congestion control would need to wait for the acknowledg-

ments according to the original design. The flooding prevention would not work anymore

for small packets. A different idea is to ensure that initial_burst_length is always

larger than burst_length to be able to send at least the TXS flagged packet when ex-

actly burst_length packets were not acked yet.

A more complex way to deal with that problem is a tree-way handshake with an acknowl-

edgment of TXF flagged packets. This may lead to a lower bandwidth and seems to be too

complex for that situation.

No idea was implemented yet and further analysis has to be done.
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Figure 4.1: ESPGOAL kernelland integration — red are carried out by the kernel module,

green ones are performed in userspace.

As shown in Figure 4.1, the implementation of ESPGOAL consists of a userspace library

called libGOAL and a kernel module handling the schedule execution and communication

with userspace processes and hosts connected over Ethernet. The userspace library im-

plements the previously defined GOAL API which handles the creation of schedules, peer

management and interaction with the actual scheduler. The scheduler itself is implemented

as kernel module together with a fork of ESP which provides different notifications for the

communication management of the ESPGOAL scheduler.

Beside those notification hooks and ethertype, we can consider the ESP transport layer

unchanged in comparison to the latest development version of the EDP/ESP kernel mod-

ule.

4.1 Control Flow

Figure 4.2 outlines the proposed control flow for the ESPGOAL module. Everything in

green happens in user space, red items happen in kernel space.
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Figure 4.2: Control flow of ESPGOAL. Tasks in red are carried out by the kernel module,

green ones are performed in userspace.

4.1.1 Loading the Kernel Module

The scheduler and the communication management are implemented using a kernel mod-

ule which consists of the ESPGOAL part and ESP as transport layer. Each of those parts

has to initialize its own datastructures and add special hooks inside the kernel when the

module gets loaded. An example would be the packet_type of ESP which is needed to

get informed about new arriving packets1 or net_proto_family which is used to add

new types of sockets2. These two hooks are enough to connect ESP to the network drivers

and to provide an interface for user and kernel processes to communicate with it.

There is no general framework for communication schedulers to provide such an interface

for the process that wants to start schedules or to get information about the state of the

scheduler. A new way of communication between libGOAL and the kernel scheduler had

to be developed on top of existing technologies. Possibilities were for example a new

syscall or special files in a pseudo file system like sysfs or /dev. The latter version

was chosen because of the relative easy creation of character devices with ioctl handlers

in comparison with the manipulation of the syscall tables3 which would need a larger

modification of the kernel itself and could not be done in a separate kernel module.

Beside the interface for user processes, also some mechanisms had to be initialized to be

able to use the socket interface inside the kernel. The most important part is the master

socket which listens on a predefined ESP port due to the fact that we do not have a sideband

1include/Linux/netdevice.h line 1217 and net/core/dev.c line 374 in Linux v2.6.36
2include/Linux/net.h line 212 and net/socket.c line 3109 in Linux v2.6.36
3arch/x86/include/asm/unistd_64.h and arch/x86/kernel/syscall_64.c in Linux v2.6.36 for amd64
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protocol to exchange information about the ports that a specific process uses to start the

peer connections. This single master socket needs some extra communication to identify to

which communicator/process this new established socket belongs, but solves the problem

of the missing sideband protocol quite well for us.

Another big problem is the blocking, non-atomic behavior of the socket API. Even if all

operations inside the protocol implementation are not sleeping at all and thus never would

start a reschedule, the socket API still enforces that a function from the socket API is

never called in an atomic context4. This means that everything which gets received by

the ESP net_proto_family receive hook is in an atomic context as the receiving of

data is done in bottom-halves which are currently implemented in Tasklets and thus run

in a SoftIRQ context. It is not allowed to call blocking, non-atomic functions inside this

context.

It is still possible to create bottom-halves which have a larger execution time. The currently

most used API for those asynchronous process execution contexts are Workqueues5. We

need to create them to start a special worker thread including the work queue which gathers

the work items. The worker thread itself provides the schedulable context for all our work

items which were enqueued from our atomic context. The worker thread will automatically

start to process them when it idles or when it finished another working item.

4.1.2 Adding a Communicator

It must be possible to distinguish different communicators before a schedule can be started.

For this purpose GOAL_Init will automatically call the ioctl IOCTL_GOAL_INIT and

provide a communicator identifier which is not already used inside the kernel module. This

identifier could be created by an global communicator manager (cf. orted in Open MPI)

which is not part of this work.

4.1.3 Starting a Schedule

When a user process calls the library function GOAL_Run, it will implicitly perform an

ioctl IOCTL_SET_SCHEDULE. Figure 4.2 shows that this schedule should be created

using libGOAL by adding new operations to an empty GOAL graph. The graph has to

4net/core/sock.c line 2001 and include/Linux/hardirq.h line 13-110 in Linux v2.6.36
5Documentation/workqueue.txt in Linux v2.6.36
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be compiled to its binary representation. It consists of the raw schedule and some extra

header information needed for the in-kernel scheduler:

1. size of the schedule

2. communicator identificator

3. schedule number

4. own rank inside communicator

5. amount of peers to add

6. pointer to memory region with peers

7. size of extra temporary buffer for schedules

8. Pointer to memory region with schedule

9. Memory region for notification bit

10. pointer to extra data for the scheduler

11. size of the extra data for the scheduler

The most important extra information is the pointer to peer information. Each added sched-

ule may have peers which were not already registered as communication partners. We

must be able to connect to those new peers using a combination of machine identificator

and port. ESP uses MAC addresses as machine identificator and our predefined port for

the master socket is 80. The MAC addresses were previously identified using libGOAL in

userspace and are stored inside the peer information datastructure of our communicator.

Each node may be part of multiple communicators. It must be possible to decide to which

communicator an incoming connection belongs. For this purpose, the communicator id

has to be send in the first packet after the connection handshake is finished. The receiving

node is able to find its communicator with that information and can decide if a connection

is still valid or if it has to postpone the connection for later usage.

All further information can be copied from userspace and attached to a new allocated

schedule. Also a special memory region is allocated to allow in kernel storage of messages

which do not need to be copied to userspace. The kernel now tries to start all independent

actions before it return back to the userspace program.

The calling program can either process independent data or call GOAL_Wait to block until

the kernel module informed the userspace program through the pointer to the notification

byte which was copied to the kernel module.

27



4 THE ARCHITECTURE OF ESPGOAL

4.1.4 Schedule Progression

The GOAL scheduler starts all currently independent actions. This is done by giving the

independent action either to a LocalOp layer which will only return when his computations

are finished or to the communication layer that enqueues management data and tries to start

a transfer. It does not mean that a transfer is finished when the call to the communication

layer functions returns. Instead, the layer itself will explicitly call the scheduler to inform

him about a finished transfer.

The scheduler can now remove all outgoing dependency edges from the finished action

and start all new independent actions.

4.1.5 Progression by ESP

The ESP sockets inform the ESPGOAL module about either finished transfers or about a

discontinued transfer due to full receiving buffers. Both would start the msg_scheduler

that runs inside a workqueue, if it is not currently running and enqueue a task to get as much

data from the receiving buffer as possible. msg_scheduler will be explained in detail

in Chapter 4.2.

ESP will automatically resume the transfer when the receiving buffer has enough room to

receive more packets. This ensures that the progression does not need to be continued by

explicit calls to a test function and removes the blocking behavior of sending and receiving

functions.

4.1.6 Unloading the Kernel Module

The Linux kernel module handling includes a special mechanism which disallows modules

which are currently used from being unloaded6. This means that it is impossible to unload

the module due to the fact that the module itself opens the listen socket by default which

must be closed first to reduce the reference count of the ESP socket layer to zero. A special

ioctl instruction was implemented to allow this. It only works when all communicators are

freed and all connections to other hosts were closed either properly or by a timeout.

6kernel/module.c line 786 in Linux v2.6.36
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4.2 Data Structures

4.2.1 Starting a Schedule

During the module initialization, the master_socket is created and defines an en-

try point for new connections. They will be stored automatically by ESP in a connec-

tion backlog of the master socket and ESPGOAL can take one connection from this

queue at a time. kernel_accept_correct in espgoal_datastructures.c

will ensure that this new connection is the connection we are waiting for or store it in

postponed_socket_list. It will try to search this list of postponed sockets first

to ensure that connection request from the same host do not get processed in the wrong

order.

The connecting host will send a new message containing the connection id to ensure that

this new connection really belongs to the the current communicator and not to a different

one which was not yet created on the current host. This case is currently unimplemented

due to the missing communicator identification server (cf. orted in Open MPI).

Afterwards the new socket can be changed to an internal state which allows the ESP layer

to call the receiving hook to inform the msg_scheduler that it can now read new mes-

sages from the receiving buffer. If we would not wait for the state change then it is quite

likely that the msg_scheduler tries to receive the communicator identificator as a nor-

mal message before the socket was verified and attached to the communicator.

The peers itself are managed by peer_list_twhich is attached to communicator_t

as shown in Figure 4.3. Each peer_list_entry_t represents a single host with all

needed information to open a connection to this host and the socket itself when the con-

nection was already established.

All information about a peer is copied from userspace when we receive

the schedule_trans_t through the IOCTL_SET_SCHEDULE handler in

espgoal_devhandler.c to extend the information stored inside the communi-

cator. The amount of new peers is indicated by num_peers_in_list inside this

structure.

A new kernel representation schedule_t of the userspace schedule will be attached to

the communicator identified by communicator_id to be able to add more information

needed to process the schedule. All other information will be copied from the userspace

schedule as seen in Figure 4.3, but memory in userspace has to be copied to the kernel
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peer_list_entry_t

rank_t rank

char[6] mac

unsigned int device_id

socket* socket

peer_list_t

rank_t num_ranks

rank_t space

peer_list_entry_t * peers

schedule_t

sched_t schedule_id

sched_t schedule_num

rank_t my_rank

char * schedule

char * scratchpad_buffer

task_struct * task

long int schedule_size

atomic_t pending_actions

atomic_t finishing_lock

char * notification

char * appendix

size_t appendix_size

communicator_t

comm_t communicator_id

peer_list_t peer_list

schedule_t[1024] schedules

int usage_counter

list_head[BUCKET_NUM] preposted_recvs

list_head[BUCKET_NUM] preposted_sends

list_head[BUCKET_NUM] outstanding_recvs

list_head[BUCKET_NUM] unexpected_msgs

mutex recv_list_lock

Figure 4.3: Data structures to manage a communicator with attached schedules and peers

used inside the schedules

memory region to be able to access it independent from the running context and without

going through the Linux memory manager.

As additional information every schedule_t has following elements:

schedule_id Identificator of the schedule inside the kernel which may be different to the

schedule_num

scratchpad_buffer buffer for temporary GOAL operation results

task Pointer to the task which emitted the ioctl 7. Needed to access the memory regions

without switching the context to this task 8

pending_actions Amount of started independent actions which are not finished yet

finishing_lock Amount of actions which finished and are eligible to destroy the ker-

nel representation of the schedule and inform the user. Only the last action which

accesses the schedule is allowed to do that.

7include/asm-generic/current.h in Linux v2.6.36
8kernel/sched.c line 2839 in Linux v2.6.36
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peer_list_entry_t

rank_t rank

char[6] mac

unsigned int device_id

socket* socket

peer_list_t

rank_t num_ranks

rank_t space

peer_list_entry_t * peers

schedule_trans_t

size_t schedule_size

comm_t communicator_id

sched_t schedule_num

rank_t local_rank

rank_t num_peers_in_list

peer_list_entry_t * peers

size_t buffer_size

char * schedule

char * notification

char * appendix

size_t appendix_size

schedule_t

sched_t schedule_id

sched_t schedule_num

rank_t my_rank

char * schedule

char * scratchpad_buffer

task_struct * task

long int schedule_size

atomic_t pending_actions

atomic_t finishing_lock

char * notification

char * appendix

size_t appendix_size

communicator_t

comm_t communicator_id

peer_list_t peer_list

schedule_t[1024] schedules

int usage_counter

list_head[BUCKET_NUM] preposted_recvs

list_head[BUCKET_NUM] preposted_sends

list_head[BUCKET_NUM] outstanding_recvs

list_head[BUCKET_NUM] unexpected_msgs

mutex recv_list_lock

Figure 4.4: Connection management data structures — Binary schedule is inserted into the

kernel schedule datastructure and new peers added to the communicator
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4.2.2 Transfer Management

ESPGOAL has two separate types of queues to manage currently ongoing non-blocking

transfers. Both are implemented in espgoal_transfer.c.

The first type handles the transfer of messages to another rank and the second one handles

the receiving and matching of incoming transfers. All incoming transfers need extra at-

tention in situations where the receiver has not yet enqueued all information about it. This

could happen when not all dependencies for a GOAL receive are finished and thus the

GOAL receive is not known to the communication management layer. The ESP transport

protocol will automatically inform the GOAL communication management layer about

finished messages and full socket buffers. A rendezvous protocol has been implemented

for large transfers to reduce the amount of receives without a preposted GOAL receive

operation.

Send Management

send_mgm_task_list is a global list of messages which have to be transferred or

where the scheduler has to be informed that the whole message was passed to the ESP

transport layer. Items can be removed and added at different points. Accesses to this list

must be serialized using send_mgm_task_lock.

New send_mgm_task_t items will be created through _esp_nonblock_send

which is indirectly called by the GOAL scheduler. It holds all data necessary to

identify the current status of the transfer and the datastructures which are needed

during the transfer as seen in Figure 4.5. Many parts can either be copied from

the call to _esp_nonblock_send like commid, sched_num, req, memtype,

sender, receiver and tag or calculated using already known information.

For example sched_id and schedptr can be calculated through functions in

espgoal_datastructures.c, but are stored inside this structure for easier and

faster access.

The storage of the pointer to the userspace or scratchpad buffer depends on the way this

function was called. There is a wrapper for sends of a simple memory region called

esp_nonblock_send and a wrapper esp_nonblock_sendvec to send multiple

memory regions as a single transfer. Both versions will call the _esp_nonblock_send

function, but the vector version only receives relative addresses to the extra buffer of the

schedule which was called appendix. These addresses have to be transformed to global
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send_mgm_task_t

comm_t commid

sched_t schedid

sched_t sched_num

schedule_t* schedptr

req_t req

unsigned char * msg

size_t transfer_length

size_t sent_byte

int send_allowed

socket * sock

void ** offsets

int * lengths

int num_elements

void * basebuffer

int data_length

char memtype

rank_t sender

rank_t receiver

tag_t tag

list_head send_list

list_head send_mgm_task_list

Figure 4.5: Send control data structures — Sends will be progressed until all data is send
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addresses inside the kernelland address space before the _esp_nonblock_send can

work transparently with them.

The biggest problem for the non-vector send function is that either the send functionality

had to be duplicated or these offsets and lengths also have to be used for the non-

vector transfer. For that purpose basebuffer and data_length are used to store the

values we got from the GOAL scheduler, num_elements is set to 1 and offsets and

lengths are used as simple pointers to basebuffer and data_length.

To differentiate between local transfers and transfers to other sockets, a look up inside the

peer_list_t will show us if a socket exists or the destination rank is on the same host.

In case we have found a valid socket then we must store a pointer to the socket to start or

continue the transfer at a different point.

Figure 4.6: GOAL transfer header

The message itself will be attached as msg. It consists of a header as shown in Figure 4.6

and the data buffer we should transfer. The header itself provides enough information to

identify the correct receive operations on the receiver side. The message chunk is limited

to 128 KiB, but larger messages can be transferred by generating multiple 128 KiB chunks

which are automatically loaded when the previous chunk was successfully copied to the

ESP socket sendbuffer. The amount of sent bytes will be stored as sent_byte and

after each 128 KiB boundary, the next chunk is loaded from the scratchpad or userspace

buffer.

This copying is done without being in the context of the original process that

started the schedule. Two special copying functions copy_to_user_task and

copy_from_user_taskwere implemented in espgoal_copyuser.cwhich work

similar like the non-*_task versions normally provided by the kernel9, but takes an ad-

ditional parameter to define the task which is used to access the correct pages.

9arch/x86/lib/usercopy_32.c line 717 in Linux v2.6.36
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The scheduler can be informed when sent_byte = sizeof(msg_header) +∑num_elements−1

i=0
lengthsi. This test must be made quite often and is costly for

complex vector sends. Therefore the sum is precalculated when we initialize the

send_mgm_task_t and store it as transfer_length.

We must ensure that no other transfer is currently running on the same socket before

the transfer can be started. Otherwise we would interlace two or more different trans-

fers and neither ESP nor our msg_header provides enough information to allow mul-

tiplexing on top of a single socket. send_allowed stores a special state which is

SEND_DISALLOWED by default. Only when no other send_mgm_task_t on the same

socket is currently in a different state then it is changed to one of two states which allows

sending on this socket. Normally it will be SEND_ALLOWED which signals all compo-

nents that the transfer can be continued. Otherwise it will be SEND_IN_PROGRESS

to inform other components that it is currently using the socket and has not yet updated

send_mgm_task_t with the results of the transfer. This allows us to start the transfer

directly after we got informed about the send action by the scheduler without waiting for

the msg_scheduler to find this send task inside the send_mgm_task_list.

Receive Management

The second type of transfer management lists are the receiving lists. The most important

subtype is the list of sockets which emitted a signal through ghandle_receive after

they have finished a transfer. At any time two lists of that type exists. One is called

recv_socket_write and the other one recv_socket_read. The write socket

queue is only accessed by ghandle_receive to enqueue new sockets. The read socket

queue is only accessed by the message scheduler to test for new messages in the socket

buffer. These lists will be exchanged when the read socket buffer is empty. This makes

it possible that the write socket queue must only be protected from multiple concurrent

accesses by ghandle_receive and from the swapping of the pointers to the read and

write queue.

We can see in Figure 4.7 that all transfers will be stored as unmachined_msg_t in

unmachined_msg_list. This list is independent from any communicator or schedule

and will get all messages which are detected, but not yet finished. The msg_scheduler

has to look through the list if there is already an unfinished message on the socket where

a transfer was finished or not. At the beginning no unfinished message should be avail-

able. We have to peek inside the socket receive buffer to test if enough data (28 Byte) are

available for the header or we have to postpone the socket for now. Otherwise it is not

possible to add a correctly initialized unmachined_msg_t structure to the list. This

usually does not happen because the probability that the 28 Byte constituting the message
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schedule_t

sched_t schedule_id

sched_t schedule_num

rank_t my_rank

char * schedule

char * scratchpad_buffer

task_struct * task

long int schedule_size

atomic_t pending_actions

atomic_t finishing_lock

char * notification

char * appendix

size_t appendix_size

communicator_t

comm_t communicator_id

peer_list_t peer_list

schedule_t[1024] schedules

int usage_counter

list_head[BUCKET_NUM] preposted_recvs

list_head[BUCKET_NUM] preposted_sends

list_head[BUCKET_NUM] outstanding_recvs

list_head[BUCKET_NUM] unexpected_msgs

mutex recv_list_lock

recv_task_t

comm_t commid

sched_t schedid

sched_t schednum

schedule_t* schedptr

void ** offsets

int * lengths

int num_elements

void * basebuffer

int data_length

rank_t src

rank_t dst

int tag

int req

size_t transfer_length

char memtype

list_head recv_list

unmachined_msg_t

char* msg

length_t received_bytes

socket* sock

recv_task_t * outstanding_receive

list_head msg_list

list_head unmachined_msg_list

Figure 4.7: Receive control data structures — Message gets received, matched and

processed

header are fragmented is small with a standard MTU of 1500 Byte. So normally we can

create a message buffer with the size min(headerlength, 128 KiB). Receives bigger than

128 KiB are handled similar to sends larger than 128 KiB. The only difference is that we

must assume that the receive was already started by the GOAL scheduler to know where

to copy each chunk we received. Otherwise we would need to allocate a new data buffer

for each chunk.

The transferred data will be copied to the receive buffer until the amount of received bytes

stored in received_bytes is equal to headerlength. This makes it possible to interrupt

the receive when not enough data is available, but continue the receive when the transfer

or part of the transfer was finished.

A finished message cannot be treated as a guarantee that the receive buffer of the socket is

now empty. We still need to check if there is at least a header for the next message avail-

able. The next socket in the recv_socket_read list should only be checked when

either not enough data is available to start a new message or to continue the current mes-

sage. This should keep the amount of data inside the receive buffer low to allow the sender

to continue his transfers as fast as possible.

36



4.2 DATA STRUCTURES

unexp_msg

void * dataptr

size_t len

list_head unexpected_msgs

communicator_t

comm_t communicator_id

peer_list_t peer_list

schedule_t[1024] schedules

int usage_counter

list_head[BUCKET_NUM] preposted_recvs

list_head[BUCKET_NUM] preposted_sends

list_head[BUCKET_NUM] outstanding_recvs

list_head[BUCKET_NUM] unexpected_msgs

mutex recv_list_lock

Figure 4.8: Unexpected messages data structures — Messages for not existing sched-

ules/receives will be stored

A finished message has to be matched against all waiting receives attached to the

outstanding_recvs list inside the communicator. It is not attached to the sched-

ule because a message for a schedule can already reach the receiver before it added the

schedule to the communicator. In that situation, it must still be possible to store those

messages in a special list called unexp_msg as seen in Figure 4.8. If the message was

successfully matched against the correct receive then the GOAL scheduler can be informed

that his receive was finished and that the new independent actions can be started.

A special exception for this matching rule are transfers bigger than 128 KiB. The mes-

sage unmachined_message_t does not store the header in an extra field. Let us

assume for now that we can always find a corresponding entry for the message in

the outstanding_recvs list and that it will never be an unexpected message. It

will be shown subsequently that this is always true for message over the rendevous

size limit. It is possible to override the current message chunk after we matched the

header against an outstanding_recvs when we store a pointer to it inside the

unmachined_message_t. It is not allowed to tell the scheduler that we already

finished the message after we found the outstanding_recv because their might be

implicit data dependencies between the buffers used in the different actions. The found

outstanding receive is still needed to find the receive buffer and it must be used when the

message is really copied to the destination buffer to inform the scheduler about the finished

action.

The outstanding_recvs are created similar to the non-blocking sends, but during the

scheduler call to esp_nonblock_recv and esp_nonblock_recvvec. The data

structure must not be created when there is already a matching unmachined_msg_t
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inside the unexp_msg list. _esp_nonblock_recv can copy the data to the intended

memory region, free the unmachined_msg_t and inform the scheduler about the fin-

ished action it just started.

When comparing recv_task_t in Figure 4.7 with send_mgm_task_t in Figure 4.5,

it is easy to see that both are quite similar and are created using the same information. The

biggest difference is the absence of a message buffer and related management information

like sent_byte, send_allowed and sock because they are already created as part

of unmachined_msg_t and must be known before the GOAL scheduler started the

receive. The rest of the information inside recv_task_t is only useful for multiple

chunk messages were we assumed that it was possible that we could create a link between

those two data structures.

Rendezvous Transfers

We assumed before that the receive was already started when a message over 128 KiB was

received by the msg_scheduler. This may not be true with the currently explained

handling of messages. A special packet similar to the already known message header in

Figure 4.6 is introduced. The flags field will have the bit MSG_PREPOSTED_RECEIVE

set and no additional data will follow the header. This message is automatically generated

and send when the GOAL scheduler starts a receive larger than 128 KiB. The receiver of

this message can now either start the related send or save it until the GOAL scheduler is

ready to start it.

msg_header_t

comm_t commid

sched_t schednum

rank_t sender

rank_t receiver

length_t len

flags_t flags

tag_t tag

preposted_recv

msg_header_t header

list_head preposted_recvs

communicator_t

comm_t communicator_id

peer_list_t peer_list

schedule_t[1024] schedules

int usage_counter

list_head[BUCKET_NUM] preposted_recvs

list_head[BUCKET_NUM] preposted_sends

list_head[BUCKET_NUM] outstanding_recvs

list_head[BUCKET_NUM] unexpected_msgs

mutex recv_list_lock

preposted_send

send_mgm_task_t * send_mgm_task_entry

list_head preposted_sends

Figure 4.9: Communicator data structures — Large sends will be postponed until the re-

ceiver announced that he waits for it

In Figure 4.9 is shown that the sender will store such a header in

the list preposted_recv attached to communicator_t which the
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_esp_nonblock_send function has to traverse when it is asked to transfer more than

128 KiB large messages. The matching header can be freed and the send_mgm_task_t

can be enqueued for transmission. Otherwise the new send_mgm_task_t will be

enqueued in preposted_send and the msg_scheduler has to search that list to

enqueue the found send_mgm_task_t for transmission.

4.2.3 Stack Overflow Avoidance

The kernel stack attached to processes/threads is currently limited to 8 KiB and can also

be reduced to 4 KiB on 32-bit x86 systems 10. This makes it impossible to have large

recursions, but it would be easy to construct them when we assume that the GOAL sched-

uler would call esp_nonblock_recv, _esp_nonblock_recv can find a matching

unexp_msg and it indirectly calls the GOAL scheduler to inform it that a receive was

finished.

A schedule could be generated which has a large amount n of receives arranged as chain

where the receive ri depends on the ri−1. The receive r0 has to depend on a special rn
which is tagged differently in comparison to all other receives. The sender had to create a

schedule with the matching sends, but the matching send sn, for rn, has to depend on all

sends s0, .., sn−1. This would lead to a stack overflow on the receiver side for large n.

To avoid a stack overflow, an extra dynamic queue progress_list was imple-

mented in espgoal_schedule.c to save information about recently finished actions.

progress_schedule_on_finished_action will allocate an item which saves

communicator id, schedule id and the request id on top of the queue. The counter

progress_task_filled is set from -1 to 0 when it tried to save the first item in an

empty queue. All other callers will increase the counter to a non-zero value and decrease

it again without any further actions beside the enqueuing of their progression item.

That ensures that only the first caller in a call chain dequeues items from

progress_list. After this first caller was identified, it has to enter

progress_scheduler and take each item out of the queue to inform the scheduler

using _progress_schedule_on_finished_action. The GOAL scheduler

can now find independent actions and start them. These actions may also finish imme-

diately, but they will also call progress_schedule_on_finished_action,

enqueue their progression item and check if they are marked to call

_progress_schedule_on_finished_action. They can return safely until

the dequeuing loop in _progress_schedule_on_finished_action is reached

10arch/x86/Kconfig.debug line 124 in Linux v2.6.36

39



4 THE ARCHITECTURE OF ESPGOAL

again. The new progression item will be dequeued and the GOAL scheduler can continue

to start new actions. This will continue until enough actions do not finish immediately and

the progress_list gets empty.

When an action finishes with an empty progress_list, the caller of

progress_schedule_on_finished_action will automatically be selected

to handle items in the queue. This should be enough to keep the size of the used stack low

and still allows to handle the progression of all finished actions.

4.3 Interpreting a GOAL Schedule

If the application calls the GOAL_Run() function to start the execution of a schedule, the

ESPGOAL library tries to open a device file associated with the ESPGOAL kernel module.

Our kernel module keeps track of the state of the associated device file — if it is already

open, any subsequent call to open will fail until the device file is closed again. We do this

to ensure that only one process tries to communicate with the kernel module at any given

time. If the device file could be opened successfully the ESPGOAL library will transfer

the binary schedule and other information associated with it to the kernel module with an

ioctl. The argument of the ioctl is a pointer to a datastructure shown in Figure 4.10. After

the ioctl is finished the device file is closed again.

schedule_trans_t

size_t schedule_size

comm_t communicator_id

sched_t schedule_num

rank_t local_rank

rank_t num_peers_in_list

peer_list_entry_t * peers

size_t buffer_size

char * schedule

char * notification

char * appendix

size_t appendix_size

Figure 4.10: The data structure that is transferred from user- to kernelland to start a new

schedule

The data which is now accessible by the kernel module contains a list of all peers that

the local rank will communicate with in the referenced schedule. The kernel module will

check the list of opened connections registered with the referenced communicator and

open new connections to those nodes that did not communicate with the local node (in the
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context of the referenced communicator) before. The schedule is copied from user- into

kernel memory to allow the application to execute it again, possibly while another copy of

it is still being executed. The copy operation is necessary as the schedule will be altered

during execution as explained later. The datastructure reference by the ioctl also contains

a pointer to userspace memory. The memory location referenced by the “notification”

pointer is set to a non-zero value as soon as the schedule execution is finished. This enables

the ESPGOAL library to efficiently check if a schedule is finished, by simply reading from

memory.

Figure 4.11: Description of the binary schedule representation

If the userspace library indicated that the transferred schedule needs a temporary buffer of

a certain size, this buffer is also allocated and registered with the schedule. After that,

schedule execution will begin. The transferred schedule is expected to have the form

depicted in Figure 4.11. Each operation is encoded differently. Figure 4.12 shows how

send operations are represented in the binary schedule.

Figure 4.12: Binary encoding of send and recv operations

Each operation has a counter (dependencies) that indicates, at any point in time during

schedule execution, how many operations have yet to be finished until this operation can

be started. This counter initially holds the number of incoming edges of the correspond-

ing node in the dependency DAG. If an operation is finished the dependency counter of

each operation referenced in the dependent operations list for the particular operation is

decremented by one. If a dependency counter reaches zero the (now startable) operation

is enqueued for execution. Operations are indexed by their byte-offset inside the sched-

ule. The beginning of the schedule contains all operations that have no dependencies (their

dependency counter is zero), as well as the number of such operations.

If ESPGOAL has finished an operation it calls the scheduler function and passes the binary

offset of the operation that was finished. The scheduler will then iterate over the list of
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num_dep_ops dependent operations and decrease their dependency counters by one. If a

dependency counter is zero, the corresponding operation will be executed.
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5 Implementing Collectives in GOAL

In this chapter we will introduce some standard collective functions (i.e., collectives im-

plemented by MPI). We will describe in detail how Open MPI 1.4.2 implements these

collectives and show how they can be implemented in GOAL.

Most collective implementations are built upon only few communication schemes. There-

fore we will first introduce these abstract schemes. Understanding those is vital for imple-

menting collective functions.

5.1 Recursive Doubling

Figure 5.1: Recursive doubling communication scheme. The x-Axis of this picture corre-

sponds to the rank number, the y Axis represents the steps of this algorithm.

Red squares represent data that is exchanged.
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Recursive doubling is a communication scheme for processor counts that are a power of

two. It consists of log2(N) steps s. In each step processors i and i ⊕ 2s (where ⊕ is the

binary exclusive or operation), exchange data. Figure 5.1 is a graphical representation of

this communication scheme.

5.2 Bruck’s Algorithm

Figure 5.2: Bruck’s communication scheme. The x-Axis of this picture corresponds to the

rank number, the y Axis represents the steps of this algorithm. Red squares

represent data that is exchanged.

Recursive doubling seems to be a good communication scheme for operations like Barrier

or Broadcast. Theoretical optimality of course depends on parameters like network latency,

bandwidth, routing, switching, congestion control, etc. However, one major drawback of

recursive doubling is the “extra step” which is necessary in cases where the processor

count is not a power of two. Bruck mitigated this problem by proposing a communication

scheme [BHK+02] where every processor sends and receives a message to/from a proces-

sor at a specific distance in every communication round. The distance doubles in every

round.

In each of the log2N step processors i − 2s mod N and i + 2s mod N exchange data

(in this example a mod b shall denote the number x : x ∈ [0, b − 1] ∧ x ≡ a mod b.

Figure 5.2 is a graphical representation of this communication scheme.
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5.3 Binomial Trees

When data has to be broadcasted or gathered from/to one node the naive approach would

require P − 1 send operation, one for each data transfer from the root to each other node.

Unfortunately most networks can not deliver full bandwidth for small message sizes. This

is also true for Ethernet networks. One of the reasons is the packet size for the used

protocol: For Gigabit Ethernet a frame has to be at least 520 Bytes in length. If the amount

of data to be transmitted is smaller, the frame will be padded with zeroes. [Spe08]

So it can be more efficient to coalesce the data for some nodes together, send this data to

another node and let him distribute the chunks of data. One way to do this is the usage of

binomial trees. Binomial trees can be constructed by the following rules:

• A binomial tree of order 0 (B0) is a single node

• A binomial tree of order k (with k > 0) is a node connected to the roots of the

binomial trees Bk−1, Bk−2, . . . , B0

If we want to map rank numbers to a binomial tree it is important that we do this in such a

way that we do not have to splice the data received from our children if we sent something

up the tree — the m children of rank r should have the ranks r+1, . . . , r+m. A binomial

tree whose node numbers meet this condition is called an Inorder Binomial Tree. An

example for such a tree is given in Figure 5.3.

0

1 2 4

3 5 6

Figure 5.3: Inorder Binomial Tree with 7 nodes and root 0. Blue arrows point to child

nodes, green arrows point to father nodes.

To implement collectives with inorder binomial trees it is unnecessary to create a bino-

mial tree in memory — we are only interested in the ranks of our children and our father

respectively. These ranks are calculated with the two functions given below.
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i n t i n o r d e r _ b m t r e e _ c h i l d ( i n t rank , i n t s i z e , i n t num_chi ld ) {

2 i n t c h i l d s = 0 ;

i n t mask = 1 ;

4 whi le ( mask < s i z e ) {

i n t r emote = rank ^ mask ;

6 i f ( r emote < rank ) break ;

e l s e i f ( r emote < s i z e ) {

8 i f ( c h i l d s == num_chi ld ) re turn r emote ;

c h i l d s ++;

10 }

mask <<= 1 ;

12 }

re turn −1;

14 }

This functions returns the num_childth child of rank rank in an inorder binomial tree of

size size with root 0. If no num_childth child exists, the return value is negative.

i n t i n o r d e r _ b m t r e e _ f a t h e r ( i n t rank , i n t s i z e ) {

2 i n t mask = 1 ;

i f (0 == rank ) re turn 0 ;

4 whi le ( mask < s i z e ) {

i n t r emote = rank ^ mask ;

6 i f ( r emote < rank ) re turn r emote ;

mask <<= 1 ;

8 }

re turn −1;

10 }

This function returns the father node of rank rank in an inorder binomial tree of size size

with root 0.

5.4 MPI_Barrier

Open MPI 1.4.2 by default uses two different barrier implementations. A barrier built upon

a recursive doubling communication scheme is used if the communicator size is a power

of two. Otherwise a Bruck-based barrier implementation is used.
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The recursive doubling communication scheme has been described in Section 5.1 for com-

municator sizes that are a power of two. For a barrier implementation in GOAL we transmit

a one-byte message in each round - instead of exchanging data we are propagating the in-

formation on which nodes are already in the barrier. That means that a node may not send

a message in each round before it did not receive the message of the previous round. In the

cases where the communicator size is not a power of two we determine the smallest power

of two which is smaller than the communicator size p, let this number be 2k. Then we per-

form the recursive doubling algorithm for the nodes 0 . . . 2k. To ensure that the last p− 2k

nodes also completed the barrier, each of the nodes 0 . . . p− 2k − 1 exchanges a message

with one of the nodes 2k . . . p − 1. Care must be taken to ensure that those “additional”

messages are not confused with the messages of the recursive doubling algorithm, so we

use a different tag for them.

Altogether a GOAL schedule for a recursive doubling based barrier can be created as

shown in the listing below:

# d e f i n e GSP GOAL_SCRATCHPAD

2 i n t commsizepo2 = pow ( 2 ,FLOORLOG( 2 , commsize ) ) ;

GOAL_AllocateScra tchpad ( g , 1 ) ;

4 GOAL_Vertex r e c v = INVALID_VERTEX;

GOAL_Vertex s e n d f = INVALID_VERTEX;

6 GOAL_Vertex sendn , recvn , send ;

i f ( myrank < commsizepo2 ) {

8 u i n t 3 2 _ t mask = 0x1 ;

whi le ( mask < commsizepo2 ) {

10 u i n t 3 2 _ t remote = myrank ^ mask ;

mask <<= 1 ;

12 i f ( r emote >= commsizepo2 ) cont inue ;

sendn = GOAL_Send ( g , 0 , 1 , remote , 0 , GSP) ;

14 r e c v n = GOAL_Recv( g , 0 , 1 , remote , 0 , GSP) ;

i f ( r e c v != INVALID_VERTEX) {

16 GOAL_Requires ( g , recv , sendn ) ;

GOAL_requires ( g , recv , r e c v n ) ;

18 }

i f ( s e n d f == INVALID_VERTEX) s e n d f = sendn ;

20 r e c v = r e c v n ;

send = sendn ;

22 }

}

24

i f ( commsize != commsizepo2 ) {

26 GOAL_Vertex sendx , r e c v x ;

i f ( myrank < ( commsize − commsizepo2 ) ) {

28 u i n t 3 2 _ t remote = myrank + commsizepo2 ;
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sendx = GOAL_Send ( g , 0 , 1 , remote , 1 , GSP ) ;

30 r e c v x = GOAL_Recv( g , 0 , 1 , remote , 1 , GSP ) ;

}

32 e l s e i f ( myrank >= commsizepo2 ) {

u i n t 3 2 _ t remote = myrank − commsizepo2 ;

34 sendx = GOAL_Send ( g , 0 , 1 , remote , 1 , GSP ) ;

r e c v x = GOAL_Recv( g , 0 , 1 , remote , 1 , GSP ) ;

36 }

GOAL_Requires ( g , recvx , s e n d f ) ;

38 }

GOAL_Schedule sched = GOAL_Compile ( g ) ;

A Bruck barrier has also been implemented in GOAL. The Bruck communication scheme

is described in Section 5.2. Here we also exchange one byte messages in each round. The

GOAL implementation of the Bruck barrier is show in the following listing.

1 i n t myrank = GOAL_MyRank ( ) ;

i n t commsize = GOAL_GroupSize ( ) ;

3 GOAL_Graph g = GOAL_CreateGraph ( ) ;

GOAL_AllocateScra tchpad ( g , 1 ) ;

5

GOAL_Vertex r e c v o = GOAL_INVALID_VERTEX;

7 GOAL_Vertex sendo = GOAL_INVALID_VERTEX;

9 f or ( i n t d i s t a n c e = 1 ; d i s t a n c e < commsize ; d i s t a n c e <<= 1) {

u i n t 3 2 _ t from = MYMOD( myrank − d i s t a n c e + commsize , commsize ) ;

11 u i n t 3 2 _ t t o = MYMOD( myrank + d i s t a n c e , commsize ) ;

GOAL_Vertex sendn = GOAL_Send ( g , 0 , 1 , to , 0 , GOAL_SCRATCHPAD) ;

13 GOAL_Vertex r e c v n = GOAL_Recv( g , 0 , 1 , from , 0 , GOAL_SCRATCHPAD

) ;

i f ( r e c v o != GOAL_INVALID_VERTEX) GOAL_Requires ( g , recvo , sendn

) ;

15 i f ( r e c v o != GOAL_INVALID_VERTEX) GOAL_Requires ( g , recvo , r e c v n

) ;

r e c v o = r e c v n ;

17 sendo = sendn ;

}

19

GOAL_Schedule sched = GOAL_Compile ( g ) ;
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5.5 MPI_Gather

Open MPI 1.4.2 by default uses four different gather implementations. For large data sizes

(where the amount of data to be received by root is greater than 6KB) a communication

pattern called linear_sync is used. This pattern works in the following way:

When the root process enters the gather collective it sends a zero byte synchronization mes-

sage to all other processes. The other ranks do not send any data before they receive this

synchronization message. This technique prohibits “flooding” the root with data, which

could lead to back pressure and in turn yield a small bandwidth.

After the processes know that root is ready to receive data they send the first segment of

data. The size of this segment depends on the overall amount of data to be received. For

datasizes of 92.16 KB and more this first segment is 32.768 KB, for datasizes between

6 KB and 92.16 KB this segment is of size 1024 Byte. After that the rest of the data is

sent.

Root will post an MPI_Irecv()1 for the first segment before it sends the synchronization

message to ensure that the data can be immediately processed upon arrival. After the

synchronization message is sent, root will issue the MPI_Irecvs() for the second segments

and waits for all the first segments to arrive completely with MPI_Wait(). After that root

copies his local data from his send to his receive buffer. And issues an MPI_Waitall() to

perform a blocking wait on the second segments.

A linear_sync communication scheme has been implemented in GOAL as shown in the

following listing:

GOAL_Schedule GOAL _l inea r_ga the r_sync ( void * sbuf , i n t scoun t ,

void * rbuf , i n t r c o u n t , i n t r o o t , i n t s e g s i z e ) {

2 i n t myrank = GOAL_MyRank ( ) ;

i n t commsize = GOAL_GroupSize ( ) ;

4 GOAL_Graph g = GOAL_CreateGraph ( ) ;

6 i f ( myrank != r o o t ) {

GOAL_Vertex syncmsg = GOAL_Recv( g , ( ( char *) r b u f ) , 1 , r o o t ) ;

8 GOAL_Vertex f i r s t s e g = GOAL_Send ( g , sbuf , s e g s i z e , r o o t ) ;

GOAL_Vertex r e s t = GOAL_Send ( g , ( ( char *) s b u f + s e g s i z e ) ,

scoun t −s e g s i z e , r o o t ) ;

10 GOAL_Requires ( g , f i r s t s e g , syncmsg ) ;

1In the actual implementation of collectives in OpenMPI no MPI_ functions are used because that would

break the profiling interface, we list the MPI functions which are equivalent to the internal calls here for

clarity
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GOAL_Requires ( g , r e s t , f i r s t s e g ) ;

12 }

e l s e {

14 s t d : : v e c t o r <GOAL_Vertex> r e q s ( commsize −1, GOAL_INVALID_VERTEX

) ;

f or ( i n t p =0; p<commsize ; p ++) {

16 i f ( p== r o o t ) cont inue ;

r e q s [ p ] = GOAL_Recv( g , ( ( char *) r b u f ) +p* r c o u n t , s e g s i z e , p )

;

18 GOAL_Vertex syncmessage = GOAL_Send ( g , ( ( char *) s b u f ) , 1 , p

) ;

GOAL_Vertex r e s t = GOAL_Recv( g , ( ( char *) r b u f ) +( p* r c o u n t ) +

s e g s i z e , r c o u n t −s e g s i z e , p ) ;

20 GOAL_Requires ( g , r e s t , syncmessage ) ;

}

22 GOAL_Vertex c p l c l = GOAL_LocalOp ( g , sbuf , NULL, rbuf ,

GOAL_COPY, GOAL_UINT, 8 , r c o u n t ) ;

f or ( i n t p =0; p<commsize −1; p ++)

24 GOAL_Requires ( g , c p l c l , r e q s [ p ] ) ;

}

26

GOAL_Schedule sched = GOAL_Compile ( g ) ;

28 GOAL_FreeGraph ( g ) ;

re turn sched ;

30 }

Note that the waitall on the second segments is implicit in GOAL, the schedule will not be

marked as finished before all receive operations have completed.

Open MPI uses two variants of the linear_sync pattern: if the amount of data to be gathered

on the root is bigger than 90 KiB it uses a initial segment size of 32 KiB. If the datasize is

smaller than 90 KiB but exceeds 6 KB the linear_sync pattern is used with a initial segment

size of 1 KiB. If the datasize is also smaller than 6 KB Open MPI uses a binomial_gather

scheme if more than 60 ranks participate in the gather operation or if the datasize is smaller

than 1 KiB and more than 10 ranks participate in the collective. In all other cases a simple

linear_gather is used.

The linear gather in OpenMPI is implemented in the following way: All ranks except root

send their data to root in a loop, root receives the data and also copies its local data into

its receive buffer. We implemented a similar communication scheme in GOAL as shown

below:

50



5.5 MPI_GATHER

GOAL_Schedule GOAL _l inea r_ga the r ( void * sbuf , i n t scoun t , void *
rbuf , i n t r c o u n t , i n t r o o t ) {

2 i n t myrank = GOAL_MyRank ( ) ;

i n t commsize = GOAL_GroupSize ( ) ;

4 GOAL_Graph g = GOAL_CreateGraph ( ) ;

/ * Everyone sends da ta ( r oo t t oo because we

6 have t o copy from send t o r e c e i v e b u f f e r ) * /

GOAL_Send ( g , sbuf , scoun t , r o o t ) ;

8 i f ( myrank == r o o t ) {

/ * r e c e i v e from eve ryone * /

10 f or ( i n t p =0; p<commsize ; p ++) {

GOAL_Recv( g , ( ( char *) r b u f ) +p* r c o u n t , r c o u n t , p ) ;

12 }

}

14 GOAL_Schedule sched = GOAL_Compile ( g ) ;

GOAL_FreeGraph ( g ) ;

16 re turn sched ;

}

The binomial gather scheme in Open MPI works in the following way: A ordered bino-

mial tree of the same size as the number of ranks in the communicator is constructed (cf.

Section 5.3). All leaf nodes send the contents of their send buffer to their predecessor (“fa-

ther”) in the binomial tree. All non-root nodes which have successors (“children”) copy

their local data into a temporary buffer and also receive the data that their children are

sending them into that buffer. This buffer now contains the sendbuffers of all childs. Due

to the properties of a inorder binomial tree, all childs have consecutive rank numbers. Af-

ter all receives are finished the temporary buffer is sent to the predecessor in the binomial

tree. The root node can receive the data from its children directly into the recv buffer. A

similar communication scheme was implemented in GOAL as shown below:

1 GOAL_Schedule GOAL _binomia l_ t ree_ga t he r ( void * sbuf , i n t scoun t ,

void * rbuf , i n t r c o u n t , i n t r o o t ) {

i n t myrank = GOAL_MyRank ( ) ;

3 i n t commsize = GOAL_GroupSize ( ) ;

i n t t o t a l _ r e c v = 0 ;

5 GOAL_Graph g = GOAL_CreateGraph ( ) ;

i f ( myrank == r o o t ) {

7 GOAL_Send ( g , sbuf , scoun t , r o o t , 1 ) ;

GOAL_Recv( g , rbuf , r c o u n t , r o o t , 1 ) ;

9 }

i f ( i n o r d e r _ b i n o m i a l _ t r e e _ c h i l d ( myrank , commsize , 0 , r o o t ) !=

−1) {

11 i n t c h i l d ;
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i n t chi ldnum = 0 ;

13 s t d : : v e c t o r <GOAL_Vertex> r e q s ;

i f ( myrank != r o o t ) {

15 GOAL_Send ( g , sbuf , scoun t , myrank , 1 ) ;

r e q s . push_back ( GOAL_Recv( g , 0 , scoun t , myrank , 1 ) ) ;

17 }

whi le ( ( c h i l d = i n o r d e r _ b i n o m i a l _ t r e e _ c h i l d ( myrank , commsize ,

childnum , r o o t ) ) != −1) {

19 i n t mycount = c h i l d − myrank ;

i f ( mycount > ( commsize − c h i l d ) )

21 mycount = commsize − c h i l d ;

mycount *= r c o u n t ;

23 i f ( myrank != r o o t ) {

r e q s . push_back ( GOAL_Recv( g , ( void *) ( t o t a l _ r e c v + s c o u n t ) ,

mycount , c h i l d , 2 , GOAL_SCRATCHPAD) ) ;

25 }

e l s e {

27 r e q s . push_back ( GOAL_Recv( g , ( ( char *) r b u f ) + t o t a l _ r e c v +

scoun t , mycount , c h i l d , 2 , GOAL_USERSPACE) ) ;

}

29 t o t a l _ r e c v += mycount ;

chi ldnum ++;

31 }

i f ( myrank != r o o t ) {

33 i n t f a t h e r = i n o r d e r _ b i n o m i a l _ t r e e _ f a t h e r ( myrank , commsize ,

r o o t ) ;

GOAL_Vertex send = GOAL_Send ( g , 0 , t o t a l _ r e c v + scoun t ,

f a t h e r , 2 , GOAL_SCRATCHPAD) ;

35 f or ( i n t i =0; i < r e q s . s i z e ( ) ; i ++) {

GOAL_Requires ( g , r e q s [ i ] , send ) ;

37 }

GOAL_AllocateScra tchpad ( g , t o t a l _ r e c v + s c o u n t ) ;

39 }

}

41 e l s e i f ( myrank != r o o t ) {

i n t f a t h e r = i n o r d e r _ b i n o m i a l _ t r e e _ f a t h e r ( myrank , commsize ,

r o o t ) ;

43 GOAL_Send ( g , sbuf , scoun t , f a t h e r , 2 ) ;

}

45 GOAL_Schedule sched = GOAL_Compile ( g ) ;

GOAL_FreeGraph ( g ) ;

47 re turn sched ;

}
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Our GOAL implementation allows us to perform timing measurements in three different

ways:

• with GOALs built in GOAL_WTIME operation we can obtain a timestamp during

schedule execution

• with the PERFTRACE API built into ESPGOAL it is possible to instrument our

code to obtain timestamps at predefined points during the execution of the GOAL

interpreter in the kernel and the ESPGOAL communication layer

• using MPIs Wtime() function we can time the userspace parts of our GOAL imple-

mentation

In the following sections we will use these possibilities to show that collectives imple-

mented in ESPGOAL have a comparable latency to those implemented in Open MPI when

using the ESP BTL. We also demonstrate that simple transformations on local data can be

efficiently carried out with ESPGOAL. This is an important feature for the implementa-

tion of reductions. We will compare the host overhead of ESPGOAL to that of LibNBC,

the only freely available non-blocking collective implementation for generic Ethernet net-

works known to the authors.

6.1 Testbed

The test system that was used to carry out all benchmarks mentioned in this chapter con-

sisted of 32 nodes of the CHiC cluster [MMHR07].

Each node consists of:

• Two Dual-Core AMD Opteron 2218 Processors
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• Two Tigon3 BCM95704A6 rev 2100 network cards

• 4 GiB of RAM

The nodes are connected to a 48 port Gigabit Ethernet Switch (SMC 8848M). These

switches theoretically support Jumbo Frames [Dyk99] up to an MTU of 9000, but only

if no VLAN is in use. As the CHiC network is configured with VLANs we could not

take advantage of this feature and had to set our MTU to 1500. Therefore Open MX has

to be configured with the flag --with-mtu=1500 as it uses a default MTU of 9000

otherwise.

Important software packages used for our benchmarks:

• Linux Kernel 2.6.36

• GNU C Compiler gcc 4.3.2

• Open MPI 1.4.2-1

• Open MX 1.3.2

• NetPIPE 3.7.1

• LibNBC 1.0.1

6.2 Interrupt coalescing parameters

Normally every Ethernet frame that enters or leaves the NIC will notify the CPU / the

kernel via an interrupt. This is desirable for small messages, as it ensures messages will

propagate as quickly as possible through the network stack and thus exhibit small laten-

cies. However, for large messages that behavior will increase the host-overhead o in the

LogGPs model [HSL09a] and decrease the bandwidth and also the overlap potential for

large messages.

Interrupt coalescing is a feature of most modern Ethernet NICs [PJD04, Int07]. It allows

fine grained configuration of the constrains that have to be met so that the network card

will raise an interrupt upon an incoming or outgoing packet. Low overhead Ethernet com-

munication protocols such as ESP or Open MX are especially sensitive towards these pa-
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rameters. The Open MX FAQ 1 states in regard to the question how coalescing parameters

should be set up:

What is the interrupt coalescing impact on Open-MX’ performance?

Most Ethernet drivers use interrupt coalescing to avoid interrupting the host

once per incoming packet. While this is good for the throughput, it increase

the latency a lot, up to several dozens of microseconds.

To get the best latency for Open-MX, interrupt coalescing should be reduced.

The easiest way to do so is to disable it completely.

$ ethtool -C eth2 rx-usecs 0

However, it is often better to set it close to the latency so that the observed la-

tency is as optimal while there is still a bit of coalescing for consecutive pack-

ets. So, assuming that you observe a N usecs latency with Open-MX when

interrupt coalescing is disabled, a nice configuration would to set coalescing

to N or N-1 usecs:

$ ethtool -C eth2 rx-usecs <N-1>

Our test system, which uses Tigon3 partno(BCM95704A6) rev 2100 cards became unsta-

ble when we set rx-usecs to zero as advised in the FAQ. Also the second paragraph of

the FAQ seemed dubious — the latency for a message that fits into one frame can not be

optimal unless an interrupt is generated immediately after the frames arrival and setting

rx-usecs to anything other than zero seems like trading latency for bandwidth, so why

should N (or N − 1) be a good value and not, say, N2? Also the tg3 driver has more coa-

lescing parameters than just rx-usecs, altogether there are 8 usable parameters: rx-frames,

rx-usecs, rx-frames-irq, rx-usecs-irq, tx-frames, tx-usecs, tx-frames-irq and tx-usecs-irq.

For an explanation of these parameters consult Figure 6.1.

Note that an interrupt is raised whenever one of the set conditions is met. So if rx-frames

is set to 1 the setting of rx-usecs becomes irrelevant for example.

To be able to set these parameters to “good” values to conduct meaningful benchmarks we

have to understand how these parameters interact with latency and bandwidth. Note that

it is not the goal of this section to find a good latency/bandwidth tradeoff, we solely want

to isolate which parameters interact with latency and bandwidth and in what way — the

mentioned tradeoffs are likely to be application specific and are only of marginal interest

1http://open-mx.gforge.inria.fr/FAQ/\#perf-intrcoal on 27. 09. 2010
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Name Range Description

rx-frames 1-255 how many frames are received before an interrupt is gener-

ated

rx-usecs 1-1023 after a frame is received, how many microseconds will be

waited before an interrupt is generated

rx-frames-irq 1-255 how many frames are received before the status is updated

if interrupts are disabled

rx-usecs-irq 1-1023 after a frame is received, how many microseconds will be

waited before the status is updated if interrupts are disabled

tx-frames 1-255 how many frames are transmitted before an interrupt is gen-

erated

tx-usecs 1-1023 after a frame is transmitted, how many microseconds will

be waited before an interrupt is generated

tx-frames-irq 1-255 how many frames are transmitted before the status is up-

dated if interrupts are disabled

tx-usecs-irq 1-1023 after a frame is transmitted, how many microseconds will be

waited before the status is updated if interrupts are disabled

Figure 6.1: Usable interrupt coalescing parameters for the Tigeon 3 Network cards in our

test system

when comparing collective implementations that are based on similar protocols with one

another.

To measure the impact of the interrupt coalescing parameters on latency and bandwidth we

used the ping-pong microbenchmark shipped with Open MX. We wrote a simple client-

server test script that selects a random set of parameters on the server, where each pa-

rameter is a set to a random number, the random numbers are distributed independent and

uniform across the whole value range of each parameter. After that the server sends the

parameters for the next run to the client through a TCP socket. Then the chosen parameters

are applied on both nodes with the Linux tool ethtool and the Open MX ping-pong is

initiated. The ping-pong conducts two different measurements: one for a 0 byte message

and one for a 1 MB message. Each measurement is repeated 1000 times by mx_pingpong

to minimize measurement errors.

To get a visual overview of the data we plotted the results of 250 of such test runs in the

following manner: Each parameter is graphed against the 0B and the 10MB latency. This

produces the 16 plots shown in Figure 6.2.

In that figure we can identify four plots which exhibit some kind of structure visible by

the “naked eye”: For the latency of small messages the rx-usecs parameter seems to be the
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Figure 6.2: Influence of the different interrupt coalescing parameters on latency and band-

width. Some parameters, such as rx-usecs, obviously have a big impact on the

network performance, while others seem completely unrelated.
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most important one, its value correlates almost perfectly with the latency. This is what we

expected: if rx-usecs is set to X microseconds on both hosts and we send a packet back

and forth the measured round-trip time will be rtt ≥ 2 ∗ tnet−latency + 2 ∗X as both hosts

have to wait X microseconds before the NIC will notify the kernel for the incoming packet.

The only other parameter that could mitigate this is rx-frames if we are lucky enough that

the packet we are waiting on is the Y ’th packet since the last interrupt and rx-frames is

set to Y . But the probability for this to happen is rather small, especially on both hosts

simultaneously. However this effect could be an explanation for the few dots below the

diagonal in the upper left plot.

Figure 6.3: Explanation for the gap in the tx-usecs vs. latency plot: For any value of tx-

usecs we can not measure round trip times in that range because the CPU will

be busy servicing the interrupt

A plausible explanation for “gap” in the tx-usecs / 0-byte-latency plot is depicted in Fig-

ure 6.3: If we set tx-usecs to the value X and send a ping from A to B, A can not receive the

message in the time from X to X + tint, where tint is the time needed to service the raised

interrupt. So if the round trip time was in that range A will measure a RTT ≥ X + tint
and therefore a higher latency will be reported. Messages that arrive before or after that

interval can be processed normally.

For the bandwidth of 10 MB messages we can see that, contrary to the Open MX FAQ, a

small rx-usecs value does not have any negative effects on the bandwidth (it might have a

negative effect on the overlap potential of collective operations but that is not the focus of

this chapter). Also, other than for the zero byte case, a small value for rx-frames now also

helps with achieving a good bandwidth.

From our visualization in Figure 6.2 we can not obtain any more information about the

other coalescing parameters. Therefore we tried to model the influence of all the coalescing

parameters on latency and bandwidth with a linear model [WR73]

Y = β0 +

n∑

i=1

βiXi + ǫ

58



6.2 INTERRUPT COALESCING PARAMETERS

where Y is a response variable, i.e., latency in our case. The Xi are the available pre-

dictors whose effect on the response we want to assess in terms of the corresponding βi

coefficients. If we fit this model to our data using the least-squares method we get the

following models:

Y = 0B latency 1MB bandwidth

β0 71.3273936 1.370e+02

βrx−usecs 0.9170643 -4.591e-02

βrx−frames 0.0148644 -2.168e-01

βrx−usecs−irq 0.0092267 -1.064e-03

βrx−frames−irq -0.0138306 1.056e-02

βtx−usecs -0.1213577 5.595e-03

βtx−frames -0.0057134 -5.291e-03

βtx−usecs−irq 0.0003548 3.660e-03

βtx−frames−irq -0.0199030 -6.843e-04

Adjusted R2 0.9109 0.7019

The R2 value is an indicator for how well the model fits the data. A R2 value of 1 means

that all data points lie on the curve implied by the model. The green color in the table

means that for these values we can say with certainty (significance-level α = 0.001) that

these values have to be different from 0 and thus the respective parameter must have a

significant impact on the latency/bandwidth.

Our analysis so far suggests to select a small value for rx-usecs and rx-frames and a large

value for tx-usecs. But we can not make a good assumption about the other parameters.

Either because they have no measurable effect on the latency and bandwidth or because

their interactions with each other are too complicated for our linear model. To assert that

the latter is not the case we tried heuristic searches in the parameter space, namely Hill-

Climbing and Genetic Optimization [Sch77].

Hill-Climbing did not yield useful results in our case, because our search space is “flat”

in some regions, all neighbor configurations will result in measurements that differ only

within the error margin of the measurements. In such cases Hill-Climbing algorithms

wander through the search space aimlessly.

Our genetic algorithm initializes the starting population with 500 random parameter sets

where each parameter is randomly chosen from the allowed value range with uniform

probability. After that we are selecting a pair of individuals (parameter sets) from the

population. For that we use roulette wheel selection

pi =
fi∑N

i=1
fi
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where the probability pi for the selection of the individual i is proportional to its fitness

fi, relative to the rest of the population. The fitness of a individual is the inverse of the

latency when we optimize for latency or the bandwidth if we optimize for bandwidth. Each

selected pair is merged into a new individual with uniform crossover. After crossover we

apply a (uniform) random value ∈ [−50, 50] to each parameter with the mutation proba-

bility m = 0.15.
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Figure 6.4: Boxplots for the coalescing parameters and the resulting latency over the first

30 generations produced by our genetic algorithm

As shown in Figure 6.4 the latency converges quickly towards a good value. The best

parameter set in the last of the simulated 50 generations gives a 0b-latency of 22.930 µs

with the following parameters:

rx-usecs rx-frames rx-usecs-irq rx-frames-irq

1 1 996 95

tx-usecs tx-frames tx-usecs-irq tx-frames-irq

32 94 724 128
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Figure 6.5: Boxplots for the coalescing parameters and the resulting bandwidth for a 10

MByte message over the first 30 generations produced by our genetic algorithm

As shown in Figure 6.5 the bandwidth converges quickly towards a good value. The best

parameter set in the last of the simulated 50 generations gives a bandwidth of 119.35 MB/s

with the following parameters:

rx-usecs rx-frames rx-usecs-irq rx-frames-irq

47 1 256 243

tx-usecs tx-frames tx-usecs-irq tx-frames-irq

9 52 640 112

Unsurprisingly the parameters resulting from the genetic optimization for latency differ

from the optimization for bandwidth. Luckily the bandwidth is nearly the same (statis-

tically the difference is insignificant) for both parameter sets, as shown in Figure 6.6.

Therefore we will use the parameter set which is optimal for the latency in all the follow-

ing benchmarks.
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Figure 6.6: Boxplots of 250 measurements for the latency and bandwidth of both parame-

ter sets given in the tables above, one resulting from the genetic optimization

for bandwidth and the other for latency. Note that the bandwidth is nearly

identical for both choices. This allows choosing the latency-optimal set for all

following benchmarks.
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6.3 Benchmarking Point to Point Latency

In the following sections we will benchmark collective communication implemented on

top of various network protocols. To understand why certain implementations might be

slower than others it is vital to know how the used protocols compare to each other in

terms of point to point latency and bandwidth. To gather this information we used Net-

PIPE [SMG96] to compare the latency and bandwidth exhibited by the Open MPI Byte

Transport Layer (BTL) for TCP, ESP and OpenMX. The latency results can be seen in

Figure 6.7 and the results for the bandwidth comparison is graphed in Figure 6.8.
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Figure 6.7: Comparison of different network protocols latency

Additionally to the MPI BTL performance data these graphs also show the latency and

bandwidth of ESPGOAL. Since there is no MPI BTL for ESPGOAL (which would

not make sense, since ESPGOAL was designed to implement collective communication,

where MPI BTLs provide an abstraction for point to point messaging), ESPGOAL could

not be benchmarked with NetPIPE or similar tools. Therefore we used the ESPGOAL to

created a schedule which started and ended with a GOAL_WTIME operation and con-

tained 100 ping pong rounds between two nodes in between. The GOAL_SEND in each

ping pong round depends on the previous receive (or the first GOAL_WTIME if there

was no previous GOAL_RECV). The second GOAL_WTIME operation depends on the

receive operation in the last ping pong round.
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Figure 6.8: Comparison of different network protocols bandwidth

After the schedule is executed we can calculate the one way latency (under the assumption

that we have symmetrical links) with tlat =
tend−tstart
2∗rounds

, where rounds is the number of ping

pong rounds performed in our benchmark (100 in our case).

6.4 Benchmarking Local Operations

To benchmark the performance of local operations which operate on userspace memory

we implemented a set of test programs which generate a single schedule which performs a

local operation on random data, run this schedule and wait for its completion. We measure

the time it takes to execute GOAL_Run() and GOAL_Wait() with MPI_Wtime(). After

that we perform the same operation in a single loop in the test program.

Since we are operating on data in userspace the GOAL interpreter has to copy the data

in and out of kernelland in a blockwise fashion. These copy operations are not done for

the “userspace” case in our benchmarks. Also we compiled the test program with -O3

optimization (because this resembles how a MPI program would probably be compiled),

while our GOAL kernel module has to be compiled with -O2 (because -O3 could break

compatibility with the rest of the kernel). Therefore it has to be expected that local op-

erations are slower then equivalent computations in a userspace program. When adding
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Figure 6.9: Speed comparison of the execution of a schedule performing only arithmetic

operations and the same operations done in a normal C++ program
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unsigned 64bit integers this performance difference becomes most apparent, and is sur-

prisingly small when dealing with floating point numbers.

In all figures one can also observe the overhead of starting the GOAL schedule. Note

that we measured the runtime of the schedule execution in the userspace program, so the

starting overhead also includes the time needed by the Linux kernel to perform the context

switch.

All benchmarks shown above operate on data in userspace memory. This is not representa-

tive for collective communication patterns, as for example for an allreduce operation, most

data does not have to be written and operated on in userspace but can directly be received

and reduced in the scratchpad buffer. Nevertheless, the benchmarks in Figure 6.9 show

that it is possible to perform arithmetic operations in the kernel in an efficient manner.

6.5 Benchmarking Collective Communication

Latency

In this section we will analyze the latency of some collective communication patterns.

Benchmarking collective communication is a challenging task because a collective is (usu-

ally) a global operation across many nodes but in most cluster computers in use today there

is no global clock available. That means we can only measure local time differences on

each node. Also this makes it hard to synchronize all nodes so that they will start to execute

the collective simultaneously.

These fact led to the development of many similar but subtly different benchmarking

schemes. A good overview over the most common ones and also the most common

mistakes and misconceptions in conjunction with benchmarking collective operations is

provided in [HSL10] and [HSL08].

Our benchmarks were carried out in the following way:

. . .

2 / / F i r s t c r e a t e a s ch edu l e f o r t h e c o l l e c t i v e

/ / we want t o benchmark

4

GOAL_Schedule sched = GOAL_bruck_barr ier ( ) ;

6

/ / E xecu t e i t num te s t t im e s and measure t h e t ime

8 / / f o r GOAL_Run ( ) + GOAL_Wait ( ) on each node
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10 f or ( c n t = 0 ; c n t < n u m t e s t s ; c n t ++) {

t 1 s = MPI_Wtime ( ) ;

12 t e s t = c n t ;

GOAL_Handle runh = GOAL_Run( sched ) ;

14 GOAL_Wait ( runh ) ;

t 1 e = MPI_Wtime ( ) ;

16 g o a l _ t i m e s [ c n t ] = t1e−t 1 s ;

}

18

/ / C o l l e c t t h e t im i n g from each node f o r o u t p u t

20

MPI_Gather ( g o a l _ t i m e s , . . . MPI_COMM_WORLD) ;

22 . . .

In the cases where we benchmarked collective that does not synchronize across all nodes,

such as Gather, we performed an MPI_Barrier() before taking the timestamp t1s to min-

imize pipelining effects. We used the same scheme to benchmark MPI collectives. Since

MPI collectives are blocking we did not have to call a Wait() function in that case, the

MPI_* function was called instead of the GOAL_Run() function.

If we ran the benchmark shown above n times for a collective across p nodes we get

n × p local time differences. First we calculate the sum of the p times obtained by each

benchmark run and divide this value by p. In our graphs we always plotted the median

value of the results. This is a meaningful value because it represents the average time per

rank that was consumed by the collective communication.

Figure 6.10 shows the result of the described collective benchmark for the Barrier collec-

tive.

Unsurprisingly the Open MX BTL outperforms all other benchmarked BTLs and also

ESPGOAL. ESPGOAL is only slightly faster than the ETH-BTL using ESP.

If we compare the latencies of binomial tree based gather implementations, as shown in

Figure 6.11 we can see that the “startup overhead” that was already evident in the lo-

cal operations benchmarks (cf. Section 6.4) limits ESPGOALs performance in situations

where the majority of the communicating nodes only spend a small amount of time in the

collective communication function.

A comparison between different implementations of the linear sync based gather with an

initial segment size of 32 KiB and a message size of 500 KiB is shown in Figure 6.12.

ESPGOAL outperforms all other transports in this case because we use non-blocking sends
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Figure 6.10: Bruck Barrier implemented in ESPGOAL vs. Open MPI barrier using differ-

ent BTLs

10 15 20 25 30

1
0

2
0

3
0

4
0

Number of nodes

T
im

e
 [
u
s
]

OMPI + TCP

OMPI + OMX

OMPI + ESP

ESPGOAL

Figure 6.11: A comparison between different Implementations of the Binomial Tree based

Gather with a message size of 512 B. The startup overhead dominates the

runtime for ESPGOAL.
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(we only block until we get the initial sync packet). Open MX was omitted from this plot

due to a performance bug in conjunction with large data sizes.
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Figure 6.12: Linear sync gather implemented in ESPGOAL vs. Open MPI gather using

different BTLs

6.6 Benchmarking Collective Communication Host

Overhead

The purpose of non-blocking collectives is to overlap the latency of the collective commu-

nication with computation. Applications which do this are typically written in the form

a p p _ b u f f e r a c t i v e , i n a c t i v e ;

2 communica t io n _h a n d l e c o l l ;

whi le ( ! s o l v e d ) {

4 c o l l = nonblock_comm ( i n c a t i v e ) ;

d o _ c o m p u t a t i o n s ( a c t i v e ) ;

6 b l o c k i n g _ w a i t ( comm) ;

exchange a c t i v e and i n a c t i v e b u f f e r ;

8 }

In this scenario there are several important factors that influence the overall perfor-

mance:
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1. The computation has to be long enough to overlap the entire collective communica-

tion. Otherwise time is wasted in the blocking wait.

2. The collective communication library either needs to ensure implicit progress (the

collective will continue to execute in the “background”) or the do_computation()

function has to make calls to a test/progress function provided by the non-blocking

collective implementation to ensure progress. Otherwise the collective will be exe-

cuted in the blocking_wait() call and therefore is not actually overlapped with com-

putation. Note that doing calls to progression functions might not always be possible,

for example if the computation consists of a single call to an external library.

3. The execution and progression of the collective should not use to many CPU cycles

since that would delay the computation. For the same reason the execution and

progression of the collective should keep cache pollution to a minimum.

To compare different non-blocking collective implementations with regards to these im-

portant factors we devised a benchmark that overlaps a collective communication with

a N × N matrix multiplication. In the case where the collective communication imple-

mentation does not guarantee progress without regular calls to a test()-function (implicit

progress) it is vital that the computation can be split into several, preferably equal, pieces

of work. We chose a N × N matrix multiplication as a computation workload because it

shows exactly that property: A multiplication of two N ×N matrices can be decomposed

into m3 smaller k × k multiplication iff. ∃m : N = mk [Str69].

After we chose a block-size k we can issue a call to a communication progression function.

In our benchmarks we chose a block size of 32 and 4 Byte Floating point values as data

elements. We store the matrices in the block data layout [PHP03] to achieve good cache

locality, as we want to observe the impact of cache pollution. The outer loop of the matrix

multiplication is parallelized with Open MP so that we can utilize all available cores in

the system, otherwise the communication could use CPU cycles (from an idle core) but it

would not have a measurable impact on the computation.

In our benchmark we measure the time in the matrix multiplication with and without a

collective communication running. The start overhead of the collective function is added

to this time. Each measurement where a collective is running is done twice, once with calls

to the respective progress function after each k × k multiplication (explicit progress) and

once without (implicit progress). After each matrix multiplication which was overlapped

by a collective function we perform a blocking wait for the collective to finish. The time

used for the blocking wait is also measured.
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Figure 6.13: NBC Overhead Benchmark

0 50 100 150 200 250

Matrix Size [N]

0
1
0
0

2
0
0

3
0
0

0
1
0
0

2
0
0

3
0
0

W
a
it
 T

im
e
 [
u
s
]

Wait, imlicit progress

Wait, explicit progress

0
2

4
6

8

M
a
tr

ix
 M

u
lt
ip

lic
a
ti
o
n
 P

e
rf

o
rm

a
n
c
e
 [
G

F
lo

p
/s

]

Matmult, no communication

Matmult, imlicit progress

Matmult, explicit progress

Figure 6.14: ESPGOAL Overhead Benchmark
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The only publicly available non-blocking collective implementations known to the authors

are LibNBC [HL06] and ESPGOAL. The results of the described benchmark with a Barrier

with 32 participating nodes as the collective, a block size k of 16 and libNBC are shown

in Figure 6.13. Apparently implicit progress does not work in LibNBC, as the time spent

in the blocking wait never drops significantly when increasing the matrix size. LibNBC

offers a configuration option --with-thread which should enable implicit progres-

sion, however, in our experiments the benchmark program terminated with a segmentation

violation inside LibNBC when it was compiled with this option.

In Figure 6.14 we have performed the same benchmark with ESPGOAL. In ESPGOAL

there is no real progression function, as all progress is asynchronous and driven by the

interrupts generated by incoming packets. However, the small overhead of calling the

GOAL_Test() function delays the matrix multiplication enough to make the lines for im-

plicit and explicit progress in Figure 6.14 distinguishable.
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Figure 6.15: Performance loss due to overlapping the matrix multiplication with a single

non-blocking barrier

In Figure 6.15 we compared the performance impact on the matrix multiplication induced

by ESPGOAL with implicit progression and LibNBC with explicit progression. It makes

no sense to examine LibNBC with implicit progression as it does not seem to offer this

functionality, as indicated in Figure 6.13. For a similar reason we choose not to ana-
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lyze ESPGOAL with explicit progression, as explicit progression is unnecessary in ESP-

GOAL.

Note that the overhead benchmark only issues a single non-blocking barrier, so as the

matrix size increases the relative performance loss decreases. This is exactly what can be

seen in Figure 6.15. We omitted the small matrix sizes from this plot where the waittime

significantly different from zero, since comparing these results would not yield meaningful

results because we can not guarantee that the amount of communication overlap was the

same for LibNBC and ESPGOAL.

We can conclude that ESPGOAL offers true asynchronous progression and significant im-

provements in terms of host overhead compared with LibNBC.

6.7 Comparing Different Ways to use Ethernet

NICs

The Linux kernel network stack consists of multiple layers, each try to provide a higher

level of abstraction. The Linux network stack is shown in Figure 6.16.

Figure 6.16: Linux Kernel Network Stack

A network interface card typically has a hardware buffer to temporarily store incoming

network packets. When a new packet arrives the Linux kernel is notified about it with an

interrupt from the network card. The device driver retrieves the newly received packets

from the hardware buffer and stores them in so called socket buffers (skbs).
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If we want to write kernel code that deals with incoming packets we can write a func-

tion that gets the packets it is interested in as an skb and register our function as a “re-

ceive hook”. This is done with the Linux kernel function dev_add_pack() defined in

Linux/netdevice.h. This function takes an argument that specified the receive hook

function pointer and the protocol family (ethertype) we are interested in. To send data the

developer has to set up an skb with the necessary information (receiver address, ethertype,

etc.) and hand this skb over to the device driver by calling dev_queue_xmit(). This

is the lowest layer of abstraction which is offered by the Linux kernel to send and receive

data in a device independent manner. The benefit of this approach is that the functions

mentioned above do not sleep and therefore they can be called in an irqhandler or Tasklet.

The disadvantage is that, unlike sockets, it does not provide abstract concepts such as

connections.

Another possibility how to implement network communication in the Linux kernel is to

use the kernel socket API. Utilizing kernel sockets is very similar to userspace socket

programming, however, in the kernel we have to ensure that whenever we want to do

something with a socket that we have the appropriate lock to prevent race conditions.

Most network protocols supported by the Linux kernel, such as TCP are implemented

with the kernel socket API. The downside of the socket API is that certain functions, for

example, sending data via kernel_sendmsg() is not possible in an interrupt handler

or Tasklet. If such functionality is required it has to be implemented in a separate kernel

thread or a workqueue element. This is the reason why ESPGOAL was implemented using

Workqueues. Other network protocols such as TCP do not have to use Workqueues or an

extra kernel thread as the problematic socket API function which might sleep are usually

called from userspace.

A standard user application uses the userspace socket API declared in sys/socket.h

to initialize and bind a socket. A socket is a file descriptor in Linux, so later calls to read()

or write() pass through the virtual file system (VFS) layer.

As explained above it is currently unavoidable to use an extra kernel thread or Workqueues

in ESPGOAL, since the ESP protocol is implemented using the Linux kernel socket API

and some function calls in this API might sleep. This raises the question if the scheduling

overhead implied by this has a negative impact on ESPGOALs performance, compared

to the other possible approaches to send and receive data in the kernel. If the overhead

required to start a new work item in a workqueue is significant it is desirable to have an

upper bound on its performance impact so that we can decide if it would be useful to

exchange the ESP protocol with something that directly utilizes the functions offered by

the device driver to send and receive data in future work.

To enable us to answer these questions we implemented a simple ping pong microbench-

mark. The results are shown in Figure 6.17. The benchmark consists of three different
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Figure 6.17: Comparison of different ways to communicate over Ethernet

implementations of a pingpong scheme, one is implemented in userspace using the raw

socket API and the other two are implemented in kernelland. They all operate on the same

principal: an Ethernet packet with a special ethertype is generated which contains four

bytes of payload. The payload is interpreted as a signed integer. Upon reception of a Eth-

ernet frame of the ethertype used by this benchmark the payload number is examined. If

it is zero we take a timestamp te and start the next round of the benchmark. If it is larger

than zero we send a new Ethernet packet to the host that we received the original Ethernet

frame from with the payload from the original packet diminished by one. When we sent

the first packet in each round we take the timestamp ts for this round.

As a result we can measure how long it takes to perform n consecutive ping pongs with

a specific communication API if we send an initial packet with the payload 2n − 1 and

subtract ts from te. As we are interested in the one-way latency we divide the result by 2n.

Each measurement is repeated 10 times and the median value is shown in the graph.

The kernel based benchmarks are implemented as a kernel module with a special receive

hook function registered. In the receive hook we either directly send the reply (shown

as “kernel recv hook” in the graph), or we create a new workqueue item which contains

a function that does this (shown as “kernel workqueue”). Both kernel benchmarks are

started via the ioctl interface. The ioctl handler gets the initial payload information, the

MAC address of the peer we want to use for this benchmark and the device index of the

device that we want to use to send the ping pong packets as arguments for the ioctl. The

timestamp ts is saved directly after entering the ioctl.
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The userspace benchmark opens a raw socket on both nodes and the server takes the start

timestamp ts and sends the initial packet for each round. After that server and client block

until they receive a packet of the specified ethertype and “reply” if the payload is larger

than zero, otherwise the timestamp te is taken.

We can observe that the overhead for inserting and scheduling the workqueue element adds

about 1.6 µs of latency. Unfortunately this overhead can add up in every round of collective

patterns such as a bruck barrier. However, if ESPGOALs latency is benchmarked in a

similar fashion it shows a much higher latency of about 29 µs which can not be explained

by the workqueue scheduling overhead.
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7 Conclusions and Future Work

We implemented a dependency driven communication framework that offers true asyn-

chronous progress without an extra progression thread. We defined an API to use such a

framework that supports simple sends and receives as well as vector sends and receives

as well and local operations. We have demonstrated that it is possible to implement

MPI collective communication functions in that framework without loosing performance.

Our framework shows significant improvements in terms of host overhead over existing

userspace implementations of non-blocking collectives.

Since our ESPGOAL kernel module provides virtualization our work can serve as a basis

for similar implementations and can be seen as an important step on the way to flexible

hardware support for collective communication.

Our work shows that it is possible to implement dependency driven communication

schemes as a Linux kernel module without placing constraints on the user. For example

our GOAL scheduler does not require the user to pin the memory used for communication

buffers.

In future work this implementation should be tuned further so that it can compete with state

of the art low overhead Ethernet protocols such as Open MX. Especially the cause for the

high startup overhead of about 30 µs should be identified and eliminated if possible. One

possible way to tune ESPGOAL even further would be to replace the ESP protocol with

another low overhead Ethernet protocol that shows better performance in point to point

latency benchmarks, for example it could be investigated if ESP can be replaced with the

kernel part of Open MX.

Also we did not investigate how large schedules can efficiently be handled by the schedule

interpreter. Such considerations are to be seen as another step on the way to a hardware

implementation for flexible collective offload to the network card.
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